
April 29th, 2024

Diffusion Models I
DDPMs

Image generated by DALL-E 3 based
on prompt “cartoon penguin riding a

unicycle”.
Generated protein backbone from RFDiffusion.

Audio generation with WaveGrad.

What are Diffusion Models?
• Diffusion models are a kind of deep generative model, i.e., a model that learns

to sample from an underlying probability distribution.

• Diffusion models generate samples through a noising/denoising process:

• During training, “noise” is added to samples from the distribution, and the
model learns to predict this noise.

• During inference, a noisy sample is first generated. The model then
iteratively removes the noise until it produces a final result, which should be
a sample from the desired distribution.

• Why do this?

• The noisy distribution is much simple to sample from.

• The generation process is broken down into smaller, easier steps.

• Most of the time, it is easy to add a desired amount of noise to a sample,
making training simple.

The noising and denoising process in DDPM

Denoising Diffusion Probabilistic Models
• First diffusion model described in “Deep Unsupervised Learning using

Nonequilibrium Thermodynamics”

• Inspired by methods in thermodynamics and statistics (in particular,
Annealed Importance Sampling)

• This lecture will focus on the diffusion model proposed in “Denoising Diffusion
Probabilistic Models” (DDPMs)

• Arguably the most popular form of diffusion models.

• Simpler to understand and implement.

• Notation between papers is somewhat inconsistent, but we will be following
the notation in the DDPM paper.

• Underlying distribution:

• Add Gaussian noise T times to get

• Forward process is a Markov chain:
where is the variance schedule

• Can sample at arbitrary without stepping through MC: and

 then

x0 ∼ q(x0)

x1, x2, …, xT

q(xt ∣ xt−1) := 𝒩(xt; 1 − βtxt−1, βtI)
0 < βi < 1

t αt := 1 − βt

αt :=
t

∏
s=1

αs

q(xt ∣ x0) = 𝒩(xt; αtx0, (1 − αt)I)

Approaches standard normal distribution: 𝒩(xT; 0, I)

• Reverse process:

• When are small, the reverse process can also be written as Gaussian
transitions:

• Determining and will determine the backward process. We set
for simplicity.

• Training goal is to minimize the negative log likelihood

pθ(xT) = 𝒩(xT; 0, I)

βt
pθ(xt−1 ∣ xt) = 𝒩(xt−1; μθ(xt, t), Σθ(xt, t))

μθ Σθ Σθ = βtI

Given trained model, sample Gaussian noise and then step through reverse process MC to get a sample x0

• see “Understanding Diffusion Models: A Unified Perspective” for detailed
derivation

• First term: reconstruction term. Can be optimized separately, but ultimately
will be treated along with other terms.

• Second term: measure of difference between normal distribution and explicit
prior distribution (does not depend on)

• Third term: measure of difference between backward process and the actual
marginal distributions of the forward process.

𝔼 [−log pθ(x0)] ≤

𝔼q(x1∣x0)[−log pθ(x0 ∣ x1)] + DKL(q(xT |x0) ∥ p(xT)) + ∑
t>1

𝔼q(xt∣x0)[DKL(q(xt−1 ∣ xt, x0) ∥ pθ(xt−1 ∣ xt)]

θ

• Let’s optimize the third term through gradient descent!

• KL divergence terms have exact formulas when distributions are normal.

• Recall: ; Just need other distribution.

where,

 and

pθ(xt−1 ∣ xt) = 𝒩(xt−1; μθ(xt, t), βtI)

q(xt−1 ∣ xt, x0) =
q(xt ∣ xt−1, x0)q(xt−1 ∣ x0)

q(xt ∣ x0)
⋯
= 𝒩(xt−1; μ̃t(xt, x0), β̃tI)

μ̃t(xt, x0) :=
αtβt

1 − αt
x0 +

αt(1 − αt−1)

1 − αt
xt β̃t :=

1 − αt−1

1 − αt
βt

• Plugging into KL divergence…

• One could train a model off this using gradient descent, but there’s a simpler formulation
not dependent on x_t.

• Re-parameterize based on explicit formula for . Knowing x_0 allows easy
sampling of x_t:

 where

• Then substituting the equivalent value for gives

𝔼q [1
2βt

∥μ̃t(xt, x0) − μθ(xt, t)∥2] + C

q(xt ∣ x0)

xt(x0, ϵ) = αtx0 + 1 − αtϵ ϵ ∼ 𝒩(0, I)

x0

μ̃t(xt(x0, ϵ), x0) =
1
αt (xt(x0, ϵ) −

βt

1 − αt
ϵ)

• Since our model knows at inference and needs to approximate , a good
parameterization of is

• So our model is now predicting given and the loss for fixed t becomes

• Tempting to drop the time scaling out front, so let’s try it:

• This ends up working very well.

xt μ̃
μθ

μθ(xt, t) =
1
αt (xt −

βt

1 − αt
ϵθ(xt, t))

ϵ xt

𝔼x0,ϵ [β2
t

2βtαt(1 − αt)
∥ϵ − ϵθ(αtx0 + 1 − αtϵ, t)∥2]

Lsimple(θ) := 𝔼t,x0,ϵ∥ϵ − ϵθ(αtx0 + 1 − αtϵ, t)∥2

Ancestral Sampling

Why did we use instead of the log-likelihood maximizing loss?

• Empirical reason: Using results in better sample quality (and is easier
to implement)

• Slightly more detailed reason: the simplified loss more heavily weights small
times in denoising. This is important in maintaining image quality when sampling.

• Theoretical reason: this loss learns the score of perturbed distribution
(reweighted based on variances).

• Two interpretations of DDPMs: learning to remove noise or learning perturbed
distributions.

Lsimple(θ)

Lsimple(θ)

∇log q(xt ∣ x0) = −
1

1 − αt
ϵ

Further Reading
• “Deep Unsupervised Learning using Nonequilibrium Thermodynamics” by

Sohl-Dickstein, et al.

• “Denoising Diffusion Probabilistic Models” by Ho, et al.

• “Understanding Diffusion Models: A Unified Perspective” by Luo

