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Diffusion Models I
DDPMs





Image generated by DALL-E 3 based 
on prompt “cartoon penguin riding a 

unicycle”.
Generated protein backbone from RFDiffusion.

Audio generation with WaveGrad.



What are Diffusion Models?
• Diffusion models are a kind of deep generative model, i.e., a model that learns 

to sample from an underlying probability distribution.


• Diffusion models generate samples through a noising/denoising process:


• During training, “noise” is added to samples from the distribution, and the 
model learns to predict this noise.


• During inference, a noisy sample is first generated. The model then 
iteratively removes the noise until it produces a final result, which should be 
a sample from the desired distribution.



• Why do this?


• The noisy distribution is much simple to sample from.


• The generation process is broken down into smaller, easier steps.


• Most of the time, it is easy to add a desired amount of noise to a sample, 
making training simple. 

The noising and denoising process in DDPM



Denoising Diffusion Probabilistic Models
• First diffusion model described in “Deep Unsupervised Learning using 

Nonequilibrium Thermodynamics”


• Inspired by methods in thermodynamics and statistics (in particular, 
Annealed Importance Sampling)


• This lecture will focus on the diffusion model proposed in “Denoising Diffusion 
Probabilistic Models” (DDPMs)


• Arguably the most popular form of diffusion models.


• Simpler to understand and implement.


• Notation between papers is somewhat inconsistent, but we will be following 
the notation in the DDPM paper.



• Underlying distribution: 


• Add Gaussian noise T times to get 


• Forward process is a Markov chain:  
where  is the variance schedule


• Can sample at arbitrary  without stepping through MC:  and 

 then


x0 ∼ q(x0)

x1, x2, …, xT

q(xt ∣ xt−1) := 𝒩(xt; 1 − βtxt−1, βtI)
0 < βi < 1

t αt := 1 − βt

αt :=
t

∏
s=1

αs

q(xt ∣ x0) = 𝒩(xt; αtx0, (1 − αt)I)

Approaches standard normal distribution: 𝒩(xT; 0, I)



• Reverse process:  


• When  are small, the reverse process can also be written as Gaussian 
transitions:  


• Determining  and  will determine the backward process. We set  
for simplicity.


• Training goal is to minimize the negative log likelihood


pθ(xT) = 𝒩(xT; 0, I)

βt
pθ(xt−1 ∣ xt) = 𝒩(xt−1; μθ(xt, t), Σθ(xt, t))

μθ Σθ Σθ = βtI



Given trained model, sample Gaussian noise and then step through reverse process MC to get a sample x0



• see “Understanding Diffusion Models: A Unified Perspective” for detailed 
derivation





• First term: reconstruction term.  Can be optimized separately, but ultimately 
will be treated along with other terms.


• Second term: measure of difference between normal distribution and explicit 
prior distribution (does not depend on )


• Third term: measure of difference between backward process and the actual 
marginal distributions of the forward process.

𝔼 [−log pθ(x0)] ≤

𝔼q(x1∣x0)[−log pθ(x0 ∣ x1)] + DKL(q(xT |x0) ∥ p(xT)) + ∑
t>1

𝔼q(xt∣x0)[DKL(q(xt−1 ∣ xt, x0) ∥ pθ(xt−1 ∣ xt)]

θ



• Let’s optimize the third term through gradient descent!


• KL divergence terms have exact formulas when distributions are normal.


• Recall: ; Just need other distribution.





where, 


  and  

pθ(xt−1 ∣ xt) = 𝒩(xt−1; μθ(xt, t), βtI)

q(xt−1 ∣ xt, x0) =
q(xt ∣ xt−1, x0)q(xt−1 ∣ x0)

q(xt ∣ x0)
⋯
= 𝒩(xt−1; μ̃t(xt, x0), β̃tI)

μ̃t(xt, x0) :=
αtβt

1 − αt
x0 +

αt(1 − αt−1)

1 − αt
xt β̃t :=

1 − αt−1

1 − αt
βt



• Plugging into KL divergence…





• One could train a model off this using gradient descent, but there’s a simpler formulation 
not dependent on x_t.


• Re-parameterize based on explicit formula for . Knowing x_0 allows easy 
sampling of x_t:


  where   


• Then substituting the equivalent value for  gives


𝔼q [ 1
2βt

∥μ̃t(xt, x0) − μθ(xt, t)∥2] + C

q(xt ∣ x0)

xt(x0, ϵ) = αtx0 + 1 − αtϵ ϵ ∼ 𝒩(0, I)

x0

μ̃t(xt(x0, ϵ), x0) =
1
αt (xt(x0, ϵ) −

βt

1 − αt
ϵ)



• Since our model knows  at inference and needs to approximate , a good 
parameterization of  is





• So our model is now predicting  given  and the loss for fixed t becomes





• Tempting to drop the time scaling out front, so let’s try it:





• This ends up working very well.

xt μ̃
μθ

μθ(xt, t) =
1
αt (xt −

βt

1 − αt
ϵθ(xt, t))

ϵ xt

𝔼x0,ϵ [ β2
t

2βtαt(1 − αt)
∥ϵ − ϵθ( αtx0 + 1 − αtϵ, t)∥2]

Lsimple(θ) := 𝔼t,x0,ϵ∥ϵ − ϵθ( αtx0 + 1 − αtϵ, t)∥2



Ancestral Sampling



Why did we use  instead of the log-likelihood maximizing loss?


• Empirical reason: Using  results in better sample quality (and is easier 
to implement)


• Slightly more detailed reason: the simplified loss more heavily weights small 
times in denoising. This is important in maintaining image quality when sampling.


• Theoretical reason: this loss learns the score of perturbed distribution 
(reweighted based on variances).





• Two interpretations of DDPMs: learning to remove noise or learning perturbed 
distributions.

Lsimple(θ)

Lsimple(θ)

∇log q(xt ∣ x0) = −
1

1 − αt
ϵ



Further Reading
• “Deep Unsupervised Learning using Nonequilibrium Thermodynamics” by 

Sohl-Dickstein, et al.


• “Denoising Diffusion Probabilistic Models” by Ho, et al.


• “Understanding Diffusion Models: A Unified Perspective” by Luo


