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Diffusion Models II
Score-based models



Recap
• Introduced Denoising Diffusion Probabilistic Models (DDPMs)


• Idea: add Gaussian noise and train a model to iteratively remove the noise


• We saw that the simplified loss was equivalent to learning the underlying 
distribution. In particular, we learned the score of a distribution (the gradient 
of the 


• We are going to see an alternative way to define diffusion models based now 
on explicitly learning the scores of distributions


• This will give us a way to generalize diffusion models into a single, flexible 
framework.



Why care about scores?
• If you have an energy-based model, if the energy is given by  then the 

probability distribution associated with it is given by


,


where the  normalizes the distribution to sum to 1.


• If one knows the energy, then sampling from  is difficult without also 
knowing , which is typically intractable to compute.


• The score  does not depend on  and allows one to 
sample from  through MCMC methods (e.g. Langevin dynamics).
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• If we have , we want to train a model  to approximate the score.


• Trying to learn the exact score is computationally infeasible for deep neural 
networks, so instead we learn a slightly perturbed score through Denoising 
Score Matching:





where . The optimal score network minimizes this 
when .


• Can sample with Langevin Dynamics:
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• Are we done? No, there are still problems with this method.


• Langevin dynamics can theoretically sample the distribution, but that may 
take a long time. Slow mixing can occur if modes are separated.

The two modes are separated by low-density regions, 
and so Langevin dynamics may not easily sample both.



• For large , the distribution  suffers less from these problems and are easier 
to sample. In fact, for very large  the distribution looks like a normal 
distribution with very high variance.


• Solution: create a family of perturbed distributions parameterized by 
 and learn the score for each. Start sampling from the 

noisiest distribution using Langevin dynamics first and then move to a less 
noisy distribution.


• At the end the final sample from  should be an approximate sample of 
.


• The model that learns the scores of this family of distributions is sometimes 
known as a Noise Conditional Score Network (NCSN).
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• Since , the denoising score matching 
objective for a fixed  is given by





• A typical choice for the full training objective is a weighting of  based 
on the expected norm of the score ( )





• Use gradient descent on  to train. Sampling is done by Langevin 
dynamics at each noise level, passing the sample to the lower noise levels.
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Sampling from NCSN involves using Langevin dynamics at each level. Samples from higher level get passed as initial points to lower levels.



Generalizing DDPMs and NCSNs
• So far we have seen two ways to mathematically define diffusion models. 

Both relied on discrete steps in time or noise.


• We can reformulate the noising/denoising into a continuous process. This has 
a number of advantages:


• DDPMs and NCSNs become discretizations of this continuous process.


• More control on the speed/quality of sampling.


• Simple to formulate controllable generation.


• There is a deterministic way to sample distribution.



• Differential Equation





• Stochastic Differential Equation (SDE)
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White Noise = “Derivative of 
Gaussian Random variable”



• If  is the data distribution, then the SDE  
will perturb this distribution with white noise.


• Typically, for a long period of time  the distribution of  will have 
almost no information about the initial distribution (most often a normal 
distribution).


• The SDE is thus describing the forward process of the diffusion model. It is 
describing a continuous way of adding noise.


• The backward process will also be given by an SDE with initial condition given 
by .

x(0) ∼ p0 dx = f(x, t)dt + g(t)dW

T x(T) ∼ pT

x(T) ∼ pT



• To sample, we solve a reverse-time SDE





which is guaranteed to have the same distributions as the forward SDE.


• Want to learn the score  for . For fixed  the objective 
becomes





where  is the density function of the solution given the initial 
value is fixed at .


• Most models choose the SDE so that  has an exact formula and can be 
sampled.
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• We can derive continuous analogues of both models that we’ve seen by taking 
the limit as the step sizes decrease to 0.


• DDPM


• The parameters  become a continuous function  and the Markov chain 
becomes an SDE


• Variance Preserving SDE: 


• NCSN


• The noise parameters  become an increasing, continuous function 


• Variance Exploding SDE: 
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Further Reading
• “Generative Modeling by Estimating Gradients of the Data Distribution” by 

Song, Ermon (see also the blog post of the same name by Song)


• “Score-based Generative Modeling through Stochastic Differential Equation” 
by Song, et al.


