Diffusion Models I
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Recap
* |Introduced Denoising Diffusion Probabilistic Models (DDPMs)
* |dea: add Gaussian noise and train a model to iteratively remove the noise

 We saw that the simplified loss was equivalent to learning the underlying
distribution. In particular, we learned the score of a distribution (the gradient
of the

* We are going to see an alternative way to define diffusion models based now
on explicitly learning the scores of distributions

* This will give us a way to generalize diffusion models into a single, flexible
framework.



Why care about scores?

- If you have an energy-based model, if the energy is given by £,(X) then the
probability distribution associated with it is given by

exp(—Ey(X))

Po(X) =
v Z,
where the Z, normalizes the distribution to sum to 1.

» If one knows the energy, then sampling from p,(X) is difficult without also
knowing Z,, which is typically intractable to compute.

 The score Vlog p,y(x) = — V E4(X) does not depend on Z, and allows one to
sample from p, through MCMC methods (e.g. Langevin dynamics).



- If we have ¢g4..,(X), we want to train a model S,(X) to approximate the score.

* Trying to learn the exact score is computationally infeasible for deep neural
networks, so instead we learn a slightly perturbed score through Denoising
Score Matching:

_qG(i‘X)9Qdata(X) Hsg(i) R Vil()g qg(i ‘ X) Hz

where g (X | X) = J(X; X, o). The optimal score network minimizes this
when sy(X) = V log g (X) = V,10g g4.,(X).

 Can sample with Langevin Dynamics:

- - € -
X =X+ 5 V. logg (X,_{) + \/Ezt



* Are we done? No, there are still problems with this method.

* Langevin dynamics can theoretically sample the distribution, but that may
take a long time. Slow mixing can occur if modes are separated.

Data scores
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The two modes are separated by low-density regions,
and so Langevin dynamics may not easily sample both.



For large o, the distribution g, suffers less from these problems and are easier

to sample. In fact, for very large o the distribution looks like a normal
distribution with very high variance.

Solution: create a family of perturbed distributions parameterized by

o, < 0, < -+ < oy and learn the score for each. Start sampling from the

noisiest distribution using Langevin dynamics first and then move to a less
noisy distribution.

At the end the final sample from s, should be an approximate sample of

q data-

The model that learns the scores of this family of distributions is sometimes
known as a Noise Conditional Score Network (NCSN).



» Since Vi logg (X | X) =—(X— x)/o7, the denoising score matching
objective for a fixed o Is given by

- 2
X—X

Sy(X, 0) +

£(0;0) ==Lk, (x)x~N (x0T

G2

» A typical choice for the full training objective is a weighting of £(6, o) based
on the expected norm of the score (||Sy(X, 0)|| x 1/0)

| o
— 2 :
L(O) = N izzl ot (0; o))

» Use gradient descent on L(6) to train. Sampling is done by Langevin
dynamics at each noise level, passing the sample to the lower noise levels.
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Sampling from NCSN involves using Langevin dynamics at each level. Samples from higher level get passed as initial points to lower levels.



Generalizing DDPMs and NCSNs

* So far we have seen two ways to mathematically define diffusion models.
Both relied on discrete steps in time or noise.

* We can reformulate the noising/denoising into a continuous process. This has
a number of advantages:

« DDPMs and NCSNs become discretizations of this continuous process.
* More control on the speed/quality of sampling.
 Simple to formulate controllable generation.

* There is a deterministic way to sample distribution.



» Differential Equation

dx f(x. 1
_— — X,
dt

» Stochastic Differential Equation (SDE)

X
e — f X —_— White Noise = “Derivative of
dr ( ’ t) T g(t) dz Gaussian Random variable”

dx = f(x, r)dr + g(r)dW



If Xx(0) ~ p, is the data distribution, then the SDE dx = f(x, r)ds + g(1)dW
will perturb this distribution with white noise.

Typically, for a long period of time 7 the distribution of X(7") ~ p; will have

almost no information about the initial distribution (most often a normal
distribution).

The SDE is thus describing the forward process of the diffusion model. It is
describing a continuous way of adding noise.

The backward process will also be given by an SDE with initial condition given
by x(1') ~ pr-



 To sample, we solve a reverse-time SDE
dx = [f(x, 1) — g(t)* V,log p(x)]dz + g(1)dW
which is guaranteed to have the same distributions as the forward SDE.

» Want to learn the score V logp,(x) for 0 < ¢ < T. For fixed t the objective
becomes

=<0 Exox@ 186X (), 1) = Vi log po,(x(@) | x(0))]I*

where p,(X(7) | X(0)) is the density function of the solution given the initial
value is fixed at X(0).

« Most models choose the SDE so that p,, has an exact formula and can be
sampled.



* We can derive continuous analogues of both models that we’ve seen by taking
the limit as the step sizes decrease to 0.

« DDPM

» The parameters . become a continuous function f(f) and the Markov chain
becomes an SDE

|
. Variance Preserving SDE: dx = — Eﬁ(t)xdt + +/p())dW

 NCSN

» The noise parameters 6; become an increasing, continuous function o(?)

—

d(c*(7)] W
dt

. Variance Exploding SDE: dx = \



Further Reading

* “Generative Modeling by Estimating Gradients of the Data Distribution” by
Song, Ermon (see also the blog post of the same name by Song)

» “Score-based Generative Modeling through Stochastic Differential Equation”
by Song, et al.



