CS 4824/ECE 4424: Decision Trees

Acknowledgement:

Many of these slides are derived from Tom Mitchell, Pascal Poupart, Pieter Abbeel, Eric Eaton, Carlos Guestrin, William Cohen, and Andrew Moore.

Supervised Function Approximation

- Problem setting
 - Set of possible instances X
 - Unknown target function $f: X \rightarrow Y$
 - Set of function hypotheses: $H = \{h \mid h: X \rightarrow Y\}$

- Input
 - Training examples {< $X^{(i)}$, $Y^{(i)}$ >} of unknown function f
- Output
 - Hypothesis $h \in H$ that best approximates f

Supervised Function Approximation: Decision Tree Learning

- Problem setting
 - Set of possible instances X
 - each instance x in X is a feature vector $x = \langle x_1, x_2, ..., x_n \rangle$
 - Unknown target function $f: X \rightarrow Y$
 - *Y* is discrete valued
 - Set of function hypotheses: $H = \{h \mid h: X \rightarrow Y\}$
 - each hypothesis *h* is a decision tree
- Input
 - Training examples {< $X^{(i)}$, $Y^{(i)}$ >} of unknown function f
- Output
 - Hypothesis $h \in H$ that best approximates f

Searching for the best hypothesis

- Decision tree learning
 - performs a heuristic search through space of decision trees

No free lunch!

- Inductive inference
 - Reliable generalization beyond the training data is impossible unless we add more assumptions into the model.

"Essentially all models are wrong, but some are useful."
George Box

No free lunch!

- Inductive inference
 - Reliable generalization beyond the training data is impossible unless we add more assumptions into the model.

"Essentially all models are wrong, but some are useful."
George Box

Q. What was the assumption in decision tree learning?

Which tree should we output?

- Decision tree learning
 - performs a heuristic search through space of decision trees

Assumption in decision tree learning

- Stop the top-down greedy growth of decision tree at smallest acceptable tree. Why?
 - Prefer the simplest hypothesis that fits the data (Occam's Razor)

Assumptions (or the lack of it) have implications...

- What if we let the decision tree learning algorithm to grow freely at will?
 - This may lead to **overfitting**!

Overfitting in decision tree learning

Avoiding overfitting

- How to avoid overfitting?
 - Stop growing the tree when data split is not significant
 - Grow full tree, then post-prune

- How to select the "best" tree?
 - Measure performance on training dataset
 - Measure perforce on standalone validation dataset

Reduce-error pruning

Split data into training and validation set

Create tree that classifies *training* set correctly Do until further pruning is harmful:

- 1. Evaluate impact on *validation* set of pruning each possible node (plus those below it)
- 2. Greedily remove the one that most improves validation set accuracy

Produces smallest version of most accurate subtree