CS 4824/ECE 4424: Decision Trees

Acknowledgement:
Many of these slides are derived from Tom Mitchell, Pascal Poupart, Pieter Abbeel, Eric Eaton, Carlos Guestrin, William Cohen, and Andrew Moore.
Supervised Function Approximation

- **Problem setting**
 - Set of possible instances X
 - Unknown target function $f: X \rightarrow Y$
 - Set of function hypotheses: $H = \{ h \mid h: X \rightarrow Y \}$

- **Input**
 - Training examples $\{(X^{(i)}, Y^{(i)})\}$ of unknown function f

- **Output**
 - Hypothesis $h \in H$ that best approximates f
Supervised Function Approximation: Decision Tree Learning

- Problem setting
 - Set of possible instances X
 - each instance x in X is a feature vector $x = <x_1, x_2, \ldots, x_n>$
 - Unknown target function $f: X \rightarrow Y$
 - Y is discrete valued
 - Set of function hypotheses: $H = \{h \mid h: X \rightarrow Y\}$
 - each hypothesis h is a decision tree

- Input
 - Training examples $\{<X(i), Y(i)>\}$ of unknown function f

- Output
 - Hypothesis $h \in H$ that best approximates f
Searching for the best hypothesis

- Decision tree learning
 - performs a heuristic search through space of decision trees
The big picture

\[f : x \rightarrow y \quad x = \langle x_1, x_2, \ldots, x_n \rangle \quad x_i \in \{0,1\} \quad Y = \{0,1\} \]

\[H = \{ h \mid h : x \rightarrow y \} \]

Hypothesis Space

Instance Space

\# DT's that can represent all these functions = \(2^n\)

\# training examples we need to label just one unique DT in the hypothesis space = \(2^n\)

\# possible functions = \(2^{2^n}\)

\(1 \times 1 = 2^n\)

so that there is All of them
No free lunch!

- Inductive inference
 - Reliable generalization beyond the training data is impossible unless we add more assumptions into the model.

- “Essentially all models are wrong, but some are useful.”
 — George Box
No free lunch!

- Inductive inference
 - Reliable generalization beyond the training data is impossible unless we add more assumptions into the model.

- “Essentially all models are wrong, but some are useful.” — George Box

Q. What was the assumption in decision tree learning?
Which tree should we output?

- Decision tree learning
 - performs a heuristic search through space of decision trees
Assumption in decision tree learning

- Stop the top-down greedy growth of decision tree at smallest acceptable tree. Why?

- Prefer the simplest hypothesis that fits the data (Occam’s Razor)
Assumptions (or the lack of it) have implications...

- What if we let the decision tree learning algorithm to grow freely at will?
 - This may lead to overfitting!
Overfitting in decision tree learning

![Graph showing overfitting in decision tree learning](image)

- **Accuracy** vs **Size of tree (number of nodes)**
- **On training data** vs **On test data**

Degree of overfitting indicated by the graph.
Avoiding overfitting

- How to avoid overfitting?
 - Stop growing the tree when data split is not significant
 - Grow full tree, then post-prune

- How to select the “best” tree?
 - Measure performance on training dataset
 - Measure perforce on standalone validation dataset
Reduce-error pruning

Split data into \textit{training} and \textit{validation} set

Create tree that classifies \textit{training} set correctly

Do until further pruning is harmful:

1. Evaluate impact on \textit{validation} set of pruning each possible node (plus those below it)

2. Greedily remove the one that most improves \textit{validation} set accuracy

Produces smallest version of most accurate subtree