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CS 4824/ECE 4424: 
Decision Trees
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∘ Problem se*ing 
∘ Set of possible instances X 

∘ Unknown target function f: X→ Y 

∘ Set of function hypotheses: H = {h |h: X→ Y} 

∘ Input  
∘ Training examples {<X(i), Y(i)>} of unknown function f 

∘ Output  
∘ Hypothesis h ∈ H that best approximates f

Supervised Function Approximation
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∘ Problem se*ing 
∘ Set of possible instances X 

∘ each instance x in X is a feature vector x = <x1, x2,…,xn >  
∘ Unknown target function f: X→ Y 

∘ Y is discrete valued 
∘ Set of function hypotheses: H = {h |h: X→ Y} 

∘ each hypothesis h is a decision tree 

∘ Input  
∘ Training examples {<X(i), Y(i)>} of unknown function f 

∘ Output  
∘ Hypothesis h ∈ H that best approximates f

Supervised Function Approximation: Decision Tree Learning
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∘ Decision tree learning  
∘ performs a heuristic search 

through space of decision trees

Searching for the best hypothesis
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The big picture
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No free lunch!

∘ Inductive inference 
∘ Reliable generalization beyond the training data is 

impossible unless we add more assumptions into the 
model. 

∘ “Essentially all models are wrong, but some are useful.” 
— George Box
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No free lunch!

∘ Inductive inference 
∘ Reliable generalization beyond the training data is 

impossible unless we add more assumptions into the 
model. 

∘ “Essentially all models are wrong, but some are useful.” 
— George Box

Q. What was the assumption in decision tree learning?
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Which tree should we output?

∘ Decision tree learning  
∘ performs a heuristic search 

through space of decision trees
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Assumption in decision tree learning

∘ Stop the top-down greedy growth of decision tree at 
smallest acceptable tree. Why? 

∘ Prefer the simplest hypothesis that fits the data 
(Occam’s Razor)
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Assumptions (or the lack of it) have implications…

∘ What if we let the decision tree learning algorithm to grow 
freely at will? 

∘ This may lead to overfi/ing!
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Overfi*ing in decision tree learning
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Avoiding overfi*ing

∘ How to avoid overfi6ing? 
∘ Stop growing the tree when data split is not significant 
∘ Grow full tree, then post-prune 

∘ How to select the “best” tree? 
∘ Measure performance on training dataset 
∘ Measure perforce on standalone validation dataset
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Reduce-error pruning

Produces smallest version of most accurate subtree


