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Decision Trees



Supervised Function Approximation

> Problem setting
> Set of possible instances X

- Unknown target function f: X— Y
> Set of function hypotheses: H={h |h: X— Y/}
> Input
> Training examples {<X®, Y©>} of unknown function f

> QOutput
- Hypothesis h € H that best approximates f
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Supervised Function Approximation: Decision Tree Learning

> Problem setting
> Set of possible instances X
o each instance x in X is a feature vector x =<x71, x2,...,X, >
- Unknown target function f: X— Y
> Yis discrete valued
> Set of function hypotheses: H={h |h: X— Y/}
> each hypothesis & is a decision tree

> Input
> Training examples {<X®, Y(©>} of unknown function f

> QOutput
- Hypothesis h € H that best approximates f
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Searching for the best hypothesis
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through space of decision trees % /ﬁ
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The big picture
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No free lunch!

> Inductive inference
- Reliable generalization beyond the training data is
impossible unless we add more assumptions into the

e —

model.
OUEL.

- “Essentially all models are wrong, but some are useful.”
— George Box
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No free lunch!

> Inductive inference
- Reliable generalization beyond the training data is
impossible unless we add more assumptions into the
model.

- “Essentially all models are wrong, but some are useful.”
— George Box

Q. What was the assumption in decision tree learning?
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Which tree should we output?
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> performs a heuristic search

through space of decision trees ﬁ /ﬁ
N
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Assumption in decision tree learning

> Stop the top-down greedy growth of decision tree at
smallest acceptable tree. Why?

> Prefer the simplest hypothesis that fits the data
(Occam’s Razor)
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Assumptions (or the lack of it) have implications...

- What if we let the decision tree learning algorithm to grow
freely at will?

> This may lead to overfitting!
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Overfitting in decision tree learning
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Avoiding overfitting

- How to avoid overfitting?
> Stop growing the tree when data split is not significant
> Grow full tree, then post-prune

- How to select the “best” tree?
> Measure performance on training dataset
- Measure perforce on standalone validation dataset
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Reduce-error pruning

Split data into fraining and validation set

Create tree that classifies training set correctly
Do until further pruning is harmful:

1. Evaluate impact on validation set of pruning
each possible node (plus those below it)

2. Greedily remove the one that most improves
validation set accuracy

Produces smallest version of most accurate subtree
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