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∘ Problem setting

∘ Set of possible instances X


∘ Unknown target function f: X→ Y


∘ Set of function hypotheses: H = {h |h: X→ Y}


∘ Input 

∘ Training examples {<X(i), Y(i)>} of unknown function f


∘ Output 

∘ Hypothesis h ∈ H that best approximates f

Supervised Function Approximation
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∘ Problem setting

∘ Set of possible instances X


∘ each instance x in X is a feature vector x = <x1, x2,…,xn > 

∘ Unknown target function f: X→ Y


∘ Y is discrete valued

∘ Set of function hypotheses: H = {h |h: X→ Y}


∘ each hypothesis h is a decision tree


∘ Input 

∘ Training examples {<X(i), Y(i)>} of unknown function f


∘ Output 

∘ Hypothesis h ∈ H that best approximates f

Supervised Function Approximation: Decision Tree Learning
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∘ Decision tree learning 

∘ performs a heuristic search 

through space of decision trees

Searching for the best hypothesis
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The big picture
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No free lunch!

∘ Inductive inference

∘ Reliable generalization beyond the training data is 

impossible unless we add more assumptions into the 
model.


∘ “Essentially all models are wrong, but some are useful.” 
— George Box
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No free lunch!

∘ Inductive inference

∘ Reliable generalization beyond the training data is 

impossible unless we add more assumptions into the 
model.


∘ “Essentially all models are wrong, but some are useful.” 
— George Box

Q. What was the assumption in decision tree learning?
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Which tree should we output?

∘ Decision tree learning 

∘ performs a heuristic search 

through space of decision trees
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Assumption in decision tree learning

∘ Stop the top-down greedy growth of decision tree at 
smallest acceptable tree. Why?


∘ Prefer the simplest hypothesis that fits the data 
(Occam’s Razor)
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Assumptions (or the lack of it) have implications…

∘ What if we let the decision tree learning algorithm to grow 
freely at will?


∘ This may lead to overfitting!
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Overfitting in decision tree learning
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Avoiding overfitting

∘ How to avoid overfitting?

∘ Stop growing the tree when data split is not significant

∘ Grow full tree, then post-prune


∘ How to select the “best” tree?

∘ Measure performance on training dataset

∘ Measure perforce on standalone validation dataset
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Reduce-error pruning

Produces smallest version of most accurate subtree


