Supervised Function Approximation

- Problem setting
 - Set of possible instances X
 - Unknown target function $f: X \rightarrow Y$
 - Set of function hypotheses: $H = \{h \mid h: X \rightarrow Y\}$

- Input
 - Training examples $\{<X(i), Y(i)>\}$ of unknown function f

- Output
 - Hypothesis $h \in H$ that best approximates f
Supervised Function Approximation: **Decision Tree Learning**

- **Problem setting**
 - Set of possible instances X
 - each instance x in X is a feature vector $x = <x_1, x_2, \ldots, x_n>$
 - Unknown target function $f: X \rightarrow Y$
 - Y is discrete valued
 - Set of function hypotheses: $H = \{h \mid h: X \rightarrow Y\}$
 - each hypothesis h is a decision tree

- **Input**
 - Training examples $\{<X^{(i)}, Y^{(i)}>|\}$ of unknown function f

- **Output**
 - Hypothesis $h \in H$ that best approximates f
Searching for the best hypothesis

- Decision tree learning
 - performs a heuristic search through space of decision trees
The big picture
No free lunch!

- Inductive inference
 - Reliable generalization beyond the training data is impossible unless we add more assumptions into the model.

- “Essentially all models are wrong, but some are useful.”
 — George Box
No free lunch!

- Inductive inference
 - Reliable generalization beyond the training data is impossible unless we add more assumptions into the model.

- “Essentially all models are wrong, but some are useful.”
 — George Box

Q. What was the assumption in decision tree learning?
Which tree should we output?

- Decision tree learning
 - performs a heuristic search through space of decision trees
Assumption in decision tree learning

- Stop the top-down greedy growth of decision tree at smallest acceptable tree. Why?
 - Prefer the simplest hypothesis that fits the data (Occam’s Razor)
Assumptions (or the lack of it) have implications...

- What if we let the decision tree learning algorithm to grow freely at will?
 - This may lead to overfitting!
Overfitting in decision tree learning

![Graph showing overfitting in decision tree learning](image)
Avoiding overfitting

- How to avoid overfitting?
 - Stop growing the tree when data split is not significant
 - Grow full tree, then post-prune

- How to select the “best” tree?
 - Measure performance on training dataset
 - Measure perforce on standalone validation dataset
Reduce-error pruning

Split data into *training* and *validation* set

Create tree that classifies *training* set correctly

Do until further pruning is harmful:

1. Evaluate impact on *validation* set of pruning each possible node (plus those below it)

2. Greedily remove the one that most improves *validation* set accuracy

Produces smallest version of most accurate subtree