Acknowledgement:
Many of these slides are derived from Tom Mitchell, Pascal Poupart, Pieter Abbeel, Eric Eaton, Carlos Guestrin, William Cohen, and Andrew Moore.
Parity Function — from shallow to deep neural network

- Deep neural networks of sigmoid and hyperbolic units often suffer from vanishing gradients
Vanishing Gradients

- Deep neural networks often suffer from vanishing gradients
Common activation functions

Sigmoid

$$h(a) = \sigma(a) = \frac{1}{1 + e^{-a}}$$

Tanh

$$h(a) = tanh(a) = \frac{e^a - e^{-a}}{e^a + e^{-a}}$$

Softmax

$$h(a) = \sigma(a)_i = \frac{e^{z_i}}{\sum_{j=1}^{K} e^{z_j}}$$

$$\sigma'(a) = \sigma(a)(1 - (\sigma(a)))$$

$$tanh'(a) = (1 - (tanh(a))^2$$

Generalization of sigmoid/logistic function to multiple dimension
Simple Example

\[y = \sigma \left(w_4 \sigma \left(w_3 \sigma \left(w_2 \sigma (w_1 x) \right) \right) \right) \]

- Common weight initialization in (0,1) or in (-1, 1)
- Sigmoid function and its derivative always less than 1
- This leads to vanishing gradients:

\[
\frac{\partial y}{\partial w_4} = \sigma'(a_4)\sigma(a_3) \\
\frac{\partial y}{\partial w_3} = \sigma'(a_4)w_4\sigma'(a_3)\sigma(a_2) \\
\frac{\partial y}{\partial w_2} = \sigma'(a_4)w_4\sigma'(a_3)w_3\sigma'(a_2)\sigma(a_1) \\
\frac{\partial y}{\partial w_1} = \sigma'(a_4)w_4\sigma'(a_3)w_3\sigma'(a_2)w_2\sigma'(a_1)x
\]

As products of factors less than 1 gets longer, gradient vanishes.
Avoiding Vanishing Gradients

- Several popular solutions:
 - Pre-training
 - Rectified linear units and maxout units
 - Skip connections
 - Batch normalization
Rectified Linear Units (ReLU)

- **Rectified linear**: $h(a) = \max(0, a)$
 - Gradient is 0 or 1 w.r.t. a
 - Sparse computation

- **Soft version (“softplus”)**: $h(a) = \log(1 + e^a)$
 - But softplus does not prevent gradient vanishing (gradient < 1)
 - Making rectified linear unit smooth does not help!
Maxout Units

- Generalization of rectified linear units

$$\max \left\{ \sum_i w^{(1)}_i x_i, \sum_i w^{(2)}_i x_i, \sum_i w^{(3)}_i x_i, \ldots \right\}$$
Overfitting

- High expressivity increases the risk of overfitting
 - # of parameters is often larger than the amount of data

- Some solutions:
 - Regularization
 - Dropout
 - Data augmentation
Dropout — Training

- **Idea**: randomly “drop” some units from the network when training.

- **Training**: at each iteration of gradient descent
 - Each input unit is dropped with probability p_1 (e.g., 0.2)
 - Each hidden unit is dropped with probability p_2 (e.g., 0.5)
Dropout — Prediction

- **Idea:** during prediction, probabilistically account for the effect of randomly “dropped” units from the network during training

- **Prediction(testing):**
 - Multiply each input unit by $1 - p_1$
 - Multiply each hidden unit $1 - p_2$
Dropout — Intuition

- Dropout can be viewed as an approximate form of ensemble learning
- In each training iteration, a different subnetwork is trained
- At test time, these subnetworks are “merged” by averaging their weights