CS 4824/ECE 4424: Convolutional Neural Networks I

Acknowledgement:
Many of these slides are derived from Tom Mitchell, Pascal Poupart, Pieter Abbeel, Eric Eaton, Carlos Guestrin, William Cohen, and Andrew Moore.
Large Networks

- What kind of neural networks can be used for large or variable length input vectors (e.g., time series)

- Common networks
 - Pre-training– Convolutional networks
 - Recurrent networks
Convolution

- Convolution: mathematical operation on two functions \(x() \) and \(w() \) that produces a third function \(y() \) that can be viewed as a modified version of one of the original functions \(x() \)

\[
y(i) = \int_{t} x(t)w(i - t)dt
\]

\[
y(i) = (x \ast w)(i)
\]

- Where \(\ast \) is an operator denoting a convolution
Effect of convolution — smoothing

\[W(i) = k e^{-\frac{(t-i)^2}{2\sigma^2}} \]
Discrete convolution

- Discrete convolution

\[y(i) = \sum_{t=-\infty}^{\infty} x(t)w(i - t) \]

- Multidimensional convolution

\[y(i, j) = \sum_{t_1=-\infty}^{\infty} \sum_{t_2=-\infty}^{\infty} x(t_1, t_2)w(i - t_1, j - t_2) \]
Application: edge detection

- Consider a grey scale image
- Detect vertical edges: \(y(i,j) = x(i,j) - x(i-1,j) \)

\[
\text{hence } w(i-t_1, j-t_2) = \begin{cases}
1 & t_1 = i, t_2 = j \\
-1 & t_1 = i-1, t_2 = j \\
0 & \text{otherwise}
\end{cases}
\]
Convolutions for feature extraction

○ In neural networks
 ○ A convolution denotes the linear combination of a subset of units based on a specific pattern of weights.

\[a_j = \sum_i w_{ji} z_i \]

○ Convolutions are often combined with an activation function to produce a feature

\[z_j = h(a_j) = h \left(\sum_i w_{ji} z_i \right) \]
Convolution Neural Network (CNN)

- **A CNN** refers to any network that consists of an *alternation* of convolution and pooling layers, *where some of the convolution weights are shared*.

- **Architecture:**

![Diagram of CNN Architecture]
Pooling

- Pooling: **commutative** mathematical operation that combines several units

- Examples:
 - max, sum, product, average, Euclidean norm, etc.

- Commutative property (order does not matter):
 - \(\max(a, b) = \max(b, a) \)