CS 4824/ECE 4424: Probability & Estimation

Acknowledgement:

Many of these slides are derived from Tom Mitchell, Pascal Poupart, Pieter Abbeel, Eric Eaton, Carlos Guestrin, William Cohen, and Andrew Moore.

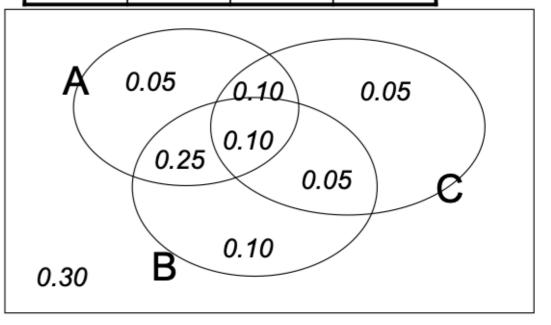
Let's turn probabilistic

- A probabilistic view of supervised function approximation
 - Instead of learning $f: X \rightarrow Y$
 - Learn $P(Y \mid X)$

The joint distribution

- Steps for coming up with a joint distribution:
 - Make a table listing all combinations of values of your variables (if there are M boolean variables then the truth table will have 2^Mrows).
 - For each combination of values, say how likely it is.
 - By axioms of probability, these values must sum to 1.

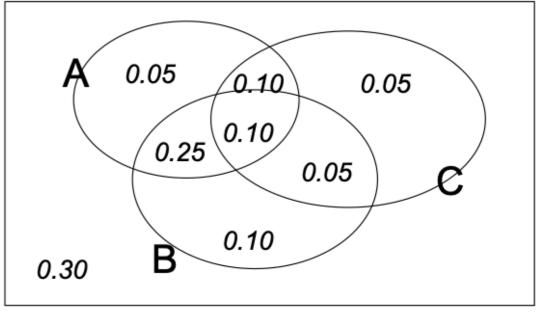
Α	В	С	Prob
0	0	0	0.30
0	0	1	0.05
0	1	0	0.10
0	1	1	0.05
1	0	0	0.05
1	0	1	0.10
1	1	0	0.25
1	1	1	0.10



Using the joint distribution

- After you have a joint distribution, you can ask for the probability of any any logical expression involving these variables.
- e.g., P(A), P(AB), P(A|B)

Α	В	С	Prob
0	0	0	0.30
0	0	1	0.05
0	1	0	0.10
0	1	1	0.05
1	0	0	0.05
1	0	1	0.10
1	1	0	0.25
1	1	1	0.10



Inference with the joint distribution

- Suppose we want to learn the function $f: \langle G, H \rangle \rightarrow W$
- Or $P(W \mid G, H)$
- Learn joint distribution
 from data:
 calculate P(W | G, H)

gender	hours_worked	wealth	
Female	v0:40.5-	poor	0.253122
		rich	0.0245895
	v1:40.5+	poor	0.0421768
		rich	0.0116293
Male	v0:40.5-	poor	0.331313
		rich	0.0971295
	v1:40.5+	poor	0.134106
		rich	0.105933

• P(W=rich | G = female, H = 40.5-) =

This sounds like the solution to learning P(Y|X)! Are we done?

This sounds like the solution to learning P(Y|X) or equivalently $f: X \rightarrow Y$

Are we done?

Learning P(Y|X) may require more data than we have

- Consider a joint distribution with 100 boolean attributes
 - # rows in this tables?
 - # people on earth?
 - fraction of rows with 0 training examples?

Learning P(Y|X) may require more data than we have

- Consider a joint distribution with 100 boolean attributes
 - # rows in this tables?
 - # people on earth?
 - fraction of rows with 0 training examples?

The issue of **Data Sparsity!**

What to do?

- Well, we need to be:
 - 1. smart about estimating probabilities from sparse data
 - maximum likelihood estimation (MLE)
 - maximum a posteriori estimation (MAP)
 - 2. smart about how to represent joint distribution
 - graphical models

Let's start by looking at how to be smart about estimating probabilities...

Elevator trials

 Given a coin, estimate the probability that it will turn up heads (X=1) or tails (X=0)

• Test A: 100 flips, 51 heads (X=1), 49 tail (X=0)

• Test B: 3 flips, 2 heads (X=1), 1 tail (X=0)

Elevator trials

 Test C: keep flipping and develop a single (online) learning algorithm that gives reasonable estimate after each flip.