CS 4824/ECE 4424: Naïve Bayes

Acknowledgement:

Many of these slides are derived from Tom Mitchell, Pascal Poupart, Pieter Abbeel, Eric Eaton, Carlos Guestrin, William Cohen, and Andrew Moore.

Let's learn classifiers by learning P(Y|X)

- Suppose we want to learn the function $f: \langle G, H \rangle \rightarrow W$
- Or $P(W \mid G, H)$

gender	hours_worked	wealth	
Female	v0:40.5-	poor	0.253122
		rich	0.0245895
	v1:40.5+	poor	0.0421768
		rich	0.0116293
Male	v0:40.5-	poor	0.331313
		rich	0.0971295
	v1:40.5+	poor	0.134106
		rich	0.105933

Gender	HrsWorked	P(rich G,HW)	P(poor G,HW)
F	<40.5	.09	.91
F	>40.5	.21	.79
М	<40.5	.23	.77
М	>40.5	.38	.62

How many parameters must we estimate?

• Suppose $X = \langle X_1, X_2, ..., X_n \rangle$, where X_i and Y are boolean RV

Gender	HrsWorked	P(rich G,HW)	P(poor G,HW)
F	<40.5	.09	.91
F	>40.5	.21	.79
М	<40.5	.23	.77
М	>40.5	.38	.62

- To estimate $P(Y|X_1, X_2, ..., X_n)$, how many parameters do we need?
- How can we design a learning algorithm that is practical?
- Can Bayes Rule help?

$$P(Y|X) = \frac{P(X|Y)P(Y)}{P(X)}$$

Can we reduce parameters using Bayes Rule?

- Suppose $X = \langle X_1, X_2, ..., X_n \rangle$, where X_i and Y are boolean RV
- Bayes Rule: • $P(Y|X) = \frac{P(X|Y)P(Y)}{P(X)}$
- How many parameters needed to estimate P(X₁, X₂, ..., X_n | Y)?

• How many parameters needed to estimate P(Y) = 1?

Naïve Bayes

• Naïve Bayes assumes

$$\circ P(X_1,\ldots,X_n | Y) = \prod_i P(X_i | Y)$$

• That is, X_i and X_j are conditionally independent given $Y \forall i \neq j$

Conditional independence

- X is conditionally independent of Y given Z, if the probability distribution governing X is independent of the value of Y given the value of Z
 - $(\forall i, j, k) P(X = x_i | Y = y_j, Z = z_k) = P(X = x_i | Z = z_k)$
 - Or equivalently, P(X | Y Z) = P(X | Z)
- P(Thunder | Rain, Lightning) = P(Thunder | Lightning)
 - That is, Thunder and Rain are conditionally independent

Naïve Bayes assumes conditional independence

- Under the conditional independence assumption, then
 - $P(X_1, X_2 | Y) =$

Naïve Bayes assumes conditional independence

• In General,

$$P(X_1,\ldots,X_n | Y) = \prod_i P(X_i | Y)$$

• How many parameters to describe $P(X_1, \ldots, X_n | Y)$? P(Y)?

l

- Without conditional independence:
- With conditional independence:

Naïve Bayes summary

• Bayes Rule:

0

$$P(Y = y_k | X_1, \dots, X_n) = \frac{P(Y = y_k)P(X_1, \dots, X_n | Y = y_k)}{\sum_j P(Y = y_j)P(X_1, \dots, X_n | Y = y_j)}$$

 $\circ~Assuming~conditional$ independence among $X_i{\,}'s$

$$P(Y = y_k | X_1, \dots, X_n) = \frac{P(Y = y_k) \prod_i P(X_i | Y = y_k)}{\sum_j P(Y = y_j) \prod_i P(X_i | Y = y_j)}$$

• How to pick the most probable Y for $X^{New} = \langle X_1, X_2, ..., X_n \rangle$?

Naïve Bayes algorithm - discrete X_i

- Train Naïve Bayes (examples)
 - $\circ \ \ For \ each \ value \ y_k$
 - Estimate $\pi_k = P(Y = y_k)$
 - \circ For each value x_{ij} of each attribute X_i

• Estimate
$$\theta_{ijk} = P(X = x_{ij} | Y = y_k)$$

• Classify X^{New}
•
$$Y^{New} \leftarrow \arg \max_{y_k} P(Y = y_k) \prod_i P(X_i^{New} | Y = y_k)$$

• $Y^{New} \leftarrow \arg \max_{y_k} \pi_k \prod_i \theta_{ijk}$

How to estimate parameters: discrete-valued Y, X_i

• Maximum likelihood estimates (MLE's)

$$\hat{\pi}_{k} = \hat{P}(Y = y_{k}) = \frac{\#D\{Y = y_{k}\}}{|D|}$$

$$\hat{\theta}_{ijk} = \hat{P}(X = x_{ij} | Y = y_k) = \frac{\#D\{X_j = x_{ij} \land Y = y_k\}}{\#D\{Y = y_k\}}$$

Naïve Bayes issue #1

- Often X_i's are not really conditionally independent
 - We can still use Naïve Bayes and works "pretty well"
 - Often results in right classification but not right prob.
- What is the effect on estimated P(Y|X)?
 - Extreme case: what if we have two copies X_i=X_k
 - $P(Y=1|X) = P(Y=1) P(X_1|Y=1) P(X_2|Y=1)...P(X_i|Y=1)...P(X_k|Y=1)$

Naïve Bayes issue #2

If unlucky, the MLE estimate for P(X_i|Y) might be zero
 Why worry about just one parameter?

• What can we do to address it?

Using MAP estimation: discrete-valued Y, X_i

- Maximum a posteriori estimate (MAP)
 - What should be our prior?
 - How to incorporate the prior into the MLE?

$$\hat{\pi}_{k} = \hat{P}(Y = y_{k}) = \frac{\#D\{Y = y_{k}\}}{|D|}$$
$$\hat{\theta}_{ijk} = \hat{P}(X = x_{ij} | Y = y_{k}) = \frac{\#D\{X_{j} = x_{ij} \land Y = y_{k}\}}{\#D\{Y = y_{k}\}}$$

Using MAP estimation: discrete-valued Y, X_i

- Maximum a posteriori estimate (MAP)
 - (Beta, Dirichlet prior)

$$\hat{\pi}_{k} = \hat{P}(Y = y_{k}) = \frac{\#D\{Y = y_{k}\} + (\beta_{k} - 1)}{|D| + \sum_{m} (\beta_{m} - 1)}$$
$$\hat{\theta}_{ijk} = \hat{P}(X = x_{ij} | Y = y_{k}) = \frac{\#D\{X_{j} = x_{ij} \land Y = y_{k}\} + (\beta_{k} - 1)}{\#D\{Y = y_{k}\} + \sum_{m} (\beta_{m} - 1)}$$

Questions to think about...

What's the decision rule of Naïve Bayes?

What if we have continuous X_i?