Acknowledgement:
Many of these slides are derived from Tom Mitchell, Pascal Poupart, Pieter Abbeel, Eric Eaton, Carlos Guestrin, William Cohen, and Andrew Moore.
Let’s learn classifiers by learning $P(Y|X)$

- Suppose we want to learn the function $f: <G, H> \rightarrow W$
- Or $P(W | G, H)$

| gender | hours_worked | wealth | $P(W | G, H)$ |
|--------|--------------|--------|---------------|
| Female | v0:40.5- | poor | 0.253122 |
| | | rich | 0.0245895 |
| | v1:40.5+ | poor | 0.0421768 |
| | | rich | 0.0116293 |
| Male | v0:40.5- | poor | 0.331313 |
| | | rich | 0.0971295 |
| | v1:40.5+ | poor | 0.134106 |
| | | rich | 0.105933 |

| Gender | HrsWorked | $P(rich | G,HW)$ | $P(poor | G,HW)$ |
|--------|-----------|---------------|--------------|
| F | <40.5 | .09 | .91 |
| F | >40.5 | .21 | .79 |
| M | <40.5 | .23 | .77 |
| M | >40.5 | .38 | .62 |
How many parameters must we estimate?

- Suppose $X = <X_1, X_2, \ldots, X_n>$, where X_i and Y are boolean RV.

- To estimate $P(Y|X_1, X_2, \ldots, X_n)$, how many parameters do we need?

- How can we design a learning algorithm that is practical?

- Can Bayes Rule help?

$$P(Y|X) = \frac{P(X|Y)P(Y)}{P(X)}$$
Can we reduce parameters using Bayes Rule?

- Suppose $X = \langle X_1, X_2, ..., X_n \rangle$, where X_i and Y are boolean RV

- Bayes Rule:

 $$P(Y|X) = \frac{P(X|Y)P(Y)}{P(X)}$$

- How many parameters needed to estimate $P(X_1, X_2, ..., X_n | Y)$?

- How many parameters needed to estimate $P(Y) = 1$?
Naïve Bayes

- Naïve Bayes assumes
 \[
P(X_1, \ldots, X_n | Y) = \prod_{i} P(X_i | Y)
\]
- That is, \(X_i\) and \(X_j\) are conditionally independent given \(Y\) \(\forall i \neq j\)
Conditional independence

- X is conditionally independent of Y given Z, if the probability distribution governing X is independent of the value of Y given the value of Z

- $(\forall i, j, k) \ P(X = x_i \mid Y = y_j, Z = z_k) = P(X = x_i \mid Z = z_k)$

- Or equivalently, $P(X \mid Y, Z) = P(X \mid Z)$

- $P(\text{Thunder} \mid \text{Rain, Lightning}) = P(\text{Thunder} \mid \text{Lightning})$

- That is, Thunder and Rain are conditionally independent
Naïve Bayes assumes conditional independence

- Under the conditional independence assumption, then
 - $P(X_1, X_2 | Y) =$
Naïve Bayes assumes conditional independence

- In General,
 \[P(X_1, \ldots, X_n \mid Y) = \prod_{i} P(X_i \mid Y) \]
- How many parameters to describe \(P(X_1, \ldots, X_n \mid Y) \)? \(P(Y) \)?
 - Without conditional independence:
 - With conditional independence:
Naïve Bayes summary

- Bayes Rule:
 \[P(Y = y_k | X_1, \ldots, X_n) = \frac{P(Y = y_k)P(X_1, \ldots, X_n | Y = y_k)}{\sum_j P(Y = y_j)P(X_1, \ldots, X_n | Y = y_j)} \]

- Assuming conditional independence among \(X_i \)'s
 \[P(Y = y_k | X_1, \ldots, X_n) = \frac{P(Y = y_k)\prod_i P(X_i | Y = y_k)}{\sum_j P(Y = y_j)\prod_i P(X_i | Y = y_j)} \]

- How to pick the most probable \(Y \) for \(X^{\text{New}} = <X_1, X_2, \ldots, X_n> \)?
Naïve Bayes algorithm - discrete X_i

- Train Naïve Bayes (examples)
 - For each value y_k
 - Estimate $\pi_k = P(Y = y_k)$
 - For each value x_{ij} of each attribute X_i
 - Estimate $\theta_{ijk} = P(X = x_{ij} | Y = y_k)$

- Classify X^{New}
 - $Y^{New} \leftarrow \arg\max_{y_k} P(Y = y_k) \prod_{i} P(X^{New}_i | Y = y_k)$
 - $Y^{New} \leftarrow \arg\max_{y_k} \pi_k \prod_{i} \theta_{ijk}$
How to estimate parameters: discrete-valued Y, X_i

- Maximum likelihood estimates (MLE’s)

\[
\hat{\pi}_k = \hat{P}(Y = y_k) = \frac{\#D\{Y = y_k\}}{|D|}
\]

\[
\hat{\theta}_{ijk} = \hat{P}(X = x_{ij} \mid Y = y_k) = \frac{\#D\{X_j = x_{ij} \land Y = y_k\}}{\#D\{Y = y_k\}}
\]
Naïve Bayes issue #1

- Often X_i’s are not really conditionally independent
 - We can still use Naïve Bayes and works “pretty well”
 - Often results in right classification but not right prob.

- What is the effect on estimated $P(Y|X)$?
 - Extreme case: what if we have two copies $X_i=X_k$
 - $P(Y=1|X) = P(Y=1) \ P(X_1|Y=1) \ P(X_2|Y=1) \ldots P(X_i|Y=1) \ldots P(X_k|Y=1)$
Naïve Bayes issue #2

- If unlucky, the MLE estimate for $P(X_i \mid Y)$ might be zero
 - Why worry about just one parameter?

- What can we do to address it?
Using MAP estimation: discrete-valued Y, X_i

- Maximum a posteriori estimate (MAP)

- What should be our prior?

- How to incorporate the prior into the MLE?

\[\hat{\pi}_k = \hat{P}(Y = y_k) = \frac{\#D\{Y = y_k\}}{|D|} \]

\[\hat{\theta}_{ijk} = \hat{P}(X = x_{ij} \mid Y = y_k) = \frac{\#D\{X_j = x_{ij} \land Y = y_k\}}{\#D\{Y = y_k\}} \]
Using MAP estimation: discrete-valued Y, X_i

- Maximum a posteriori estimate (MAP)
 - (Beta, Dirichlet prior)

\[
\hat{\pi}_k = \hat{P}(Y = y_k) = \frac{\#D\{Y = y_k\} + (\beta_k - 1)}{|D| + \sum_m (\beta_m - 1)}
\]

\[
\hat{\theta}_{ijk} = \hat{P}(X = x_{ij} | Y = y_k) = \frac{\#D\{X_j = x_{ij} \land Y = y_k\} + (\beta_k - 1)}{\#D\{Y = y_k\} + \sum_m (\beta_m - 1)}
\]
Questions to think about…

What’s the decision rule of Naïve Bayes?

What if we have continuous X_i?