CS 4824/ECE 4424:
Gaussian Naïve Bayes

Acknowledgement:
Many of these slides are derived from Tom Mitchell, Pascal Poupart, Pieter Abbeel, Eric Eaton, Carlos Guestrin, William Cohen, and Andrew Moore.
Naïve Bayes in a Nutshell

- Bayes Rule:
 \[P(Y = y_k | X_1, \ldots, X_n) = \frac{P(Y = y_k)P(X_1, \ldots, X_n | Y = y_k)}{\sum_j P(Y = y_j)P(X_1, \ldots, X_n | Y = y_j)} \]

- Assuming conditional independence among \(X_i \)'s
 \[P(Y = y_k | X_1, \ldots, X_n) = \frac{P(Y = y_k)\prod_i P(X_i | Y = y_k)}{\sum_j P(Y = y_j)\prod_i P(X_i | Y = y_j)} \]

- How to pick the most probable \(Y \) for \(X^{\text{New}} = <X_1, X_2, \ldots, X_n> \)?

\[Y^{\text{New}} \leftarrow \arg \max_{y_k} P(Y = y_k)\prod_i P(X_i^{\text{New}} | Y = y_k) \]
Naïve Bayes algorithm - discrete X_i

- Train Naïve Bayes (examples)
 - For each value y_k
 - Estimate $\pi_k = P(Y = y_k)$
 - For each value x_{ij} of each attribute X_i
 - Estimate $\theta_{ijk} = P(X = x_{ij} | Y = y_k)$
 - Note: Prob. must sum to 1 so we only need to estimate $n-1$ of these

- Classify X^{New}
 - $Y^{\text{New}} \leftarrow \arg \max_{y_k} P(Y = y_k) \prod_i P(X_i^{\text{New}} | Y = y_k)$
 - $Y^{\text{New}} \leftarrow \arg \max_{y_k} \pi_k \prod_i \theta_{ijk}$
Another way to view Naïve Bayes (boolean Y)

Decision rule:

$$P(Y|X) = \frac{P(X|Y) P(Y)}{P(X)}$$

$$1 \geq \frac{P(Y=1 | X_1 \ldots X_n)}{P(Y=0 | X_1 \ldots X_n)} = \frac{P(Y=1) \prod \limits_{i} P(X_i | Y=1)}{P(Y=0) \prod \limits_{i} P(X_i | Y=0)}$$

$$0 \geq \ln \frac{P(Y=1) \prod \limits_{i} P(X_i | Y=1)}{P(Y=0) \prod \limits_{i} P(X_i | Y=0)}$$

$$0 \geq \ln \frac{P(Y=1)}{P(Y=0)} + \sum \limits_{i} \ln \frac{P(X_i | Y=1)}{P(X_i | Y=0)}$$

Linear sum of a prior term and conditional prob. term.
What if we have continuous X_i

- For example, image classification
 - X_i is the ith pixel, $Y =$ mental state

- We still have

$$P(Y = y_k | X_1, \ldots, X_n) = \frac{P(Y = y_k) \prod_i P(X_i | Y = y_k)}{\sum_j P(Y = y_j) \prod_i P(X_i | Y = y_j)}$$

- How to represent $P(X_i | Y)$?
What if we have continuous X_i

- For example, image classification
 - X_i is the ith pixel, $Y =$ mental state

- Gaussian Naïve Bayes (GNB) assumes

 \[
 P(X_i | Y) = \frac{1}{\sigma_{ik} \sqrt{2\pi}} \exp\left(-\frac{1}{2} \left(\frac{x - \mu_{ik}}{\sigma_{ik}} \right)^2 \right)
 \]

- Sometimes assume σ_{ik}
 - is independent of Y (i.e., σ_i)
 - is independent of X_i (i.e., σ_k)
 - or both (i.e., σ)

k is the class label

i is the feature

$\var \text{ means}$

what are the implications of these assumptions?
Gaussian Naïve Bayes algorithm: continuous X_i but discrete Y

- **Train Naïve Bayes (examples)**
 - For each value y_k
 - Estimate $\pi_k = P(Y = y_k)$
 - For each value x_{ij} of each attribute X_i
 - Estimate class conditional μ_{ik} and variance σ_{ik}
 - Note: Prob. must sum to 1 so we only need to estimate $n-1$ of these

- **Classify X^{New}**
 - $Y^{\text{New}} \leftarrow \arg\max_{y_k} P(Y = y_k) \prod_i P(X^{\text{New}}_i | Y = y_k)$
 - $Y^{\text{New}} \leftarrow \arg\max_{y_k} \pi_k \prod_i \mathcal{N}(X^{\text{New}}_i, \mu_{ik}, \sigma_{ik})$
Estimating parameters: continuous X_i but discrete Y

- MLE

 \[\hat{\mu}_{ik} = \frac{1}{\sum_j \delta(Y_j = y_k)} \sum_j X_i^j \delta(Y_j = y_k) \]

 \[\sigma_{ik}^2 = \frac{1}{\sum_j \delta(Y_j = y_k)} \sum_j (X_i^j - \hat{\mu}_{ik})^2 \delta(Y_j = y_k) \]
Gaussian Naïve Bayes - decision surface

- Assume \(Y = \text{PlayBasketball} \) (boolean) \(X_1 = \text{Height} \) \(X_2 = \text{Age} \).
- \(Y^{\text{New}} \leftarrow \arg \max_{y_k} P(Y \mid y_k) \prod_i P(X_i^{\text{New}} \mid Y = y_k) \); assume \(P(Y=1) = 0.5 \).
What is the minimum possible error?

- Best case:
 - Conditional independence assumption is satisfied
 - We can perfectly estimate $P(Y)$, $P(X|Y)$ (i.e. infinite training data)
But...

- Naïve Bayes allows estimating $P(Y|X)$ by learning $P(Y)$ and $P(X|Y)$
- Why not learn $P(Y|X)$ directly?