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Idea: 

∘ Naïve Bayes allows estimating P(Y|X) by learning P(Y) 
and P(X|Y) 

∘ Why not learn P(Y|X) directly?

Logistic Regression
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∘ Consider learning f: X→ Y 
∘ X is a vector of real-valued features <X1, X2, …,Xn> 
∘ Y is boolean  
∘ Assume all Xi's are conditionally independent given Y 
∘ Model  as Gaussian ~  
∘ Model P(Y) as Bernoulli ( ) 

∘ Given that, what’s the parametric form of ?

P(Xi |Y = yk) 𝒩(μik, σi)
π

P(Y |X)

Problem seRing
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∘ P(Y = 1 |X) =
P(Y = 1)P(X |Y = 1)

P(Y = 1)P(X |Y = 1) + P(Y = 0)P(X |Y = 0)

Parametric form of P(Y|X)
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∘ ∑
i

ln
P(Xi |Y = 0)
P(Xi |Y = 1)

Parametric form of P(Y|X)
P(x |yk) =

1

σik 2π
e (− 1

2 ( x − μik
σik )

2 )
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∘ Therefore,  

∘ where, ; and  for i = 1…n         

P(Y = 1 |X) =
1

1 + exp(w0 + ∑n
i=1 wixi)

w0 = ln
1 − π

π
+ ∑

i

μ2
i1 − μ2

i0

2σ2
i

wi =
μi0 − μi1

σ2
i

Parametric form of P(Y|X)
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∘  

∘ implies  
∘  

∘ implies 

∘  

∘ or equivalently   

∘

P(Y = 1 |X = < X1, . . . , Xn > ) =
1

1 + exp(w0 + ∑n
i=1 wixi)

P(Y = 0 |X = < X1, . . . , Xn > ) =

P(Y = 0 |X)
P(Y = 1 |X)

=

ln
P(Y = 0 |X)
P(Y = 1 |X)

=

Very convenient!
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∘  

∘ implies  
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∘

P(Y = 1 |X = < X1, . . . , Xn > ) =
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1 + exp(w0 + ∑n
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P(Y = 0 |X = < X1, . . . , Xn > ) =
exp(w0 + ∑n

i=1 wixi)

1 + exp(w0 + ∑n
i=1 wixi)

P(Y = 0 |X)
P(Y = 1 |X)

= exp(w0 +
n

∑
i=1

wixi)

ln
P(Y = 0 |X)
P(Y = 1 |X)

= w0 +
n

∑
i=1

wixi

Very convenient!

linear classification rule! 

dot product of  
weights and the features

a . b =
n

∑
i=1

aibi
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Logistic function

P(Y = 1 |X) =
1

1 + exp(w0 + ∑n
i=1 wixi)
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Logistic regression more generally
∘ Logistic regression when Y not boolean, but still discrete valued 
∘ Now  and so we need to learn R-1 sets of weights 

∘ for k < R:          

∘ for k = R:        

Y ∈ {y1, . . . yR}

P(Y = yk |X) =
exp(wk0 + ∑n

i=1 wkixi)

1 + ∑R−1
j=1 exp(wj0 + ∑n

i=1 wjixi)

P(Y = yR |X) =
1

1 + ∑R−1
j=1 exp(wj0 + ∑n

i=1 wjixi)
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Training logistic regression: MCLE

∘ We have L training examples {<X1, Y1>,…, <XL, YL>} 
∘ Maximum likelihood estimate (MLE) for parameters W 

∘  

∘             

∘ Maximum conditional likelihood estimate (MCLE)

WMLE = arg max
W

P( < X1, Y1 > . . . < XL, YL > |W)

= arg max
W ∏

l

P( < Xl, Yl > |W)
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Training logistic regression: MCLE
∘ We need to choose W  = <w0,…,wn> to                                                                                 

maximize the conditional likelihood of training data 

∘ where  

∘ and  

∘ Training data D = {<X1, Y1>,…, <XL, YL>} 

∘ Data likelihood is  

∘ Data conditional likelihood is  

∘ Therefore we need to estimate 

P(Y = 0 |X, W ) =
1

1 + exp(w0 + ∑n
i=1 wixi)

P(Y = 1 |X, W ) =
exp(w0 + ∑n

i=1 wixi)

1 + exp(w0 + ∑n
i=1 wixi)

∏
l

P( < Xl, Yl > |W )

∏
l

P(Yl |Xl, W )

WMCLE = arg max
W ∏

l

P(Yl |Xl, W )



Machine Learning | Virginia Tech© Debswapna Bha6acharya 14

Expressing conditional log likelihood

∘  

∘ where  

∘ and  

∘         

               

              

l(W ) = ln∏
l

P(Yl |Xl, W ) = ∑
l

ln P(Yl |Xl, W )

P(Y = 0 |X, W ) =
1

1 + exp(w0 + ∑n
i=1 wixi)

P(Y = 1 |X, W ) =
exp(w0 + ∑n

i=1 wixi)

1 + exp(w0 + ∑n
i=1 wixi)

l(W ) = ∑
l

Yl ln P(Yl = 1 |Xl, W ) + (1 − Yl)ln P(Yl = 0 |Xl, W )

= ∑
l

Yl ln
P(Yl = 1 |Xl, W )
P(Yl = 0 |Xl, W )

+ ln P(Yl = 0 |Xl, W )

= ∑
l

Yl(w0 +
n

∑
i

wiXl
i ) − ln(1 + exp(w0 +

n

∑
i

wiXl
i ))
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Maximizing conditional log likelihood

∘  

               

∘ Good news: l(W) is a concave function of W 

∘ Bad news: no closed-form solution to maximize l(W) 

l(W) = ln∏
l

P(Yl |Xl, W)

= ∑
l

Yl(w0 +
n

∑
i

wiXl
i) − ln(1 + exp(w0 +

n

∑
i

wiXl
i))

What do we do?


