
Machine Learning | Virginia Tech© Debswapna Bha6acharya

CS 4824/ECE 4424:
Gradient-based Optimization

1

Acknowledgement:
Many of these slides are derived from Tom Mitchell,
Pascal Poupart, Pieter Abbeel, Eric Eaton, Carlos
Guestrin, William Cohen, and Andrew Moore.

Machine Learning | Virginia Tech© Debswapna Bha6acharya 2

Training logistic regression: MCLE
∘ We need to choose W = <w0,…,wn> to

maximize the conditional likelihood of training data

∘ where

∘ and

∘ Training data D = {<X1, Y1>,…, <XL, YL>}

∘ Data likelihood is

∘ Data conditional likelihood is

∘ Therefore we need to estimate

P(Y = 0 |X, W) =
1

1 + exp(w0 + ∑n
i=1 wixi)

P(Y = 1 |X, W) =
exp(w0 + ∑n

i=1 wixi)

1 + exp(w0 + ∑n
i=1 wixi)

∏
l

P(< Xl, Yl > |W)

∏
l

P(Yl |Xl, W)

WMCLE = arg max
W ∏

l

P(Yl |Xl, W)

Machine Learning | Virginia Tech© Debswapna Bha6acharya 3

Expressing conditional log likelihood

∘

∘ where

∘ and

∘

l(W) = ln∏
l

P(Yl |Xl, W) = ∑
l

ln P(Yl |Xl, W)

P(Y = 0 |X, W) =
1

1 + exp(w0 + ∑n
i=1 wixi)

P(Y = 1 |X, W) =
exp(w0 + ∑n

i=1 wixi)

1 + exp(w0 + ∑n
i=1 wixi)

l(W) = ∑
l

Yl ln P(Yl = 1 |Xl, W) + (1 − Yl)ln P(Yl = 0 |Xl, W)

= ∑
l

Yl ln
P(Yl = 1 |Xl, W)
P(Yl = 0 |Xl, W)

+ ln P(Yl = 0 |Xl, W)

= ∑
l

Yl(w0 +
n

∑
i

wiXl
i) − ln(1 + exp(w0 +

n

∑
i

wiXl
i))

Machine Learning | Virginia Tech© Debswapna Bha6acharya 4

Maximizing conditional log likelihood

∘

∘ Good news: l(W) is a concave function of W

∘ Bad news: no closed-form solution to maximize l(W)

l(W) = ln∏
l

P(Yl |Xl, W)

= ∑
l

Yl(w0 +
n

∑
i

wiXl
i) − ln(1 + exp(w0 +

n

∑
i

wiXl
i))

Machine Learning | Virginia Tech© Debswapna Bha6acharya 5

∘ Gradient

∘ Training Rule:

∘ i.e.

∇E(⃗w) = [
∂E
∂w0

,
∂E
∂w1

, . . . ,
∂E
∂wn

]

⃗w (i+1) ← ⃗w i + η∇E(⃗w)

Δwi = η
∂E
∂wi

Gradient ascent

Machine Learning | Virginia Tech© Debswapna Bha6acharya 6

∘ Gradient

∘ Training Rule:

∘ i.e.

∇E(⃗w) = [
∂E
∂w0

,
∂E
∂w1

, . . . ,
∂E
∂wn

]

⃗w (i+1) ← ⃗w i + η∇E(⃗w)

Δwi = η
∂E
∂wi

Gradient ascent
E(⃗W)

w2

w1

Machine Learning | Virginia Tech© Debswapna Bha6acharya 7

Maximizing conditional log likelihood via gradient ascent

∘

∘

∘ Gradient ascent algorithm: iterate until change <

∘ i repeat

∘ assume for

l(W) = ln∏
l

P(Yl |Xl, W)

= ∑
l

Yl(w0 +
n

∑
i

wiXl
i) − ln(1 + exp(w0 +

n

∑
i

wiXl
i))

∂l(W)
∂wi

= ∑
l

Xl
i(Y

l − ̂P(Yl = 1 |Xl, W))

ε

∀ wi ← wi + η∑
l

Xl
i(Y

l − ̂P(Yl = 1 |Xl, W))

X0 = 1 w0 step size (a.k.a. learning rate)

Machine Learning | Virginia Tech© Debswapna Bha6acharya 8

h6ps://yihui.org/animation/example/grad-desc/

h6ps://blog.skz.dev/gradient-descent

Demo Time 🙂

https://yihui.org/animation/example/grad-desc/
https://blog.skz.dev/gradient-descent

Machine Learning | Virginia Tech© Debswapna Bha6acharya 9

Batch vs. Stochastic gradient
∘ Batch gradient: use over the entire training set

∘ Do until satisfied:

∘ 1. Compute the gradient:

∘ 2. Update the vector of parameters:

∘ Stochastic gradient: use over a single example
∘ Do until satisfied:

∘ 1. Choose (with replacement) a random training example

∘ 2. Compute the gradient just for d:

∘ 2. Update the vector of parameters:
∘ Stochastic approximates Batch arbitrarily closely as
∘ Stochastic is much faster than Batch when D is very large
∘ An intermediate approach is to use a subset of D instead of just one single example d

∇ED(⃗w) D

∇ED(⃗w) = [
∂ED

∂w0
,

∂ED

∂w1
, . . . ,

∂ED

∂wn
]

⃗w (i+1) ← ⃗w i + η∇ED(⃗w)

∇Ed(⃗w) d ∈ D

d ∈ D

∇Ed(⃗w) = [
∂Ed

∂w0
,

∂Ed

∂w1
, . . . ,

∂Ed

∂wn
]

⃗w (i+1) ← ⃗w i + η∇Ed(⃗w)
η → 0

Machine Learning | Virginia Tech© Debswapna Bha6acharya 10

Hyperparameters in gradient-based optimization

∘ Epoch:
∘ An epoch refers to a full pass over the dataset
∘ One epoch means that each sample in the training dataset has had an opportunity to

update the internal model parameters
∘ The number of epochs is the number of complete passes through the training dataset
∘ The number of epochs can be set to an integer value between one and infinity
∘ You can run the algorithm for as long as you like and even stop it using other criteria

besides a fixed number of epochs.

∘ Batch size:
∘ Batch size is a number of samples processed before the model is updated
∘ An epoch is comprised of one or more batches
∘ The size of a batch must be more than or equal to one and less than or equal to the

number of samples in the training dataset

∘ There are no magic rules for how to configure these hyperparameters. You may try
different values and see what works best for your problem.

Machine Learning | Virginia Tech© Debswapna Bha6acharya 11

We looked at M(C)LE, but what about MAP?

∘ One common approach is to define priors on W
∘ Normal distribution, zero mean, identity covariance

∘ Helps avoid very large weights and overfi6ing

∘ Therefore we can estimate

∘ Let’s assume Gaussian prior: W ~

WMAP = arg max
W

ln[P(W)∏
l

P(Yl |Xl, W)]

𝒩(0,σI)

Machine Learning | Virginia Tech© Debswapna Bha6acharya 12

M(C)LE vs MAP
∘ Maximum (conditional) likelihood estimate

∘

∘ Maximum a posteriori estimate with prior W ~

∘

WMCLE = arg max
W

ln∏
l

P(Yl |Xl, W)

wi ← wi + η∑
l

Xl
i(Y

l − ̂P(Yl = 1 |Xl, W))

𝒩(0,σI)
WMAP = arg max

W
ln[P(W)∏

l

P(Yl |Xl, W)]

wi ← wi − ηλwi + η∑
l

Xl
i(Y

l − ̂P(Yl = 1 |Xl, W))

Machine Learning | Virginia Tech© Debswapna Bha6acharya 13

MAP estimates and regularization
∘ Maximum a posteriori estimate with prior W ~

∘

∘ Called a “regularization” term
∘ Helps reduce overfi6ing, especially for sparse data situations
∘ Keeps weights near zero with prior W ~ , or whatever the

prior suggests
∘ Used very frequently in logistic regression

𝒩(0,σI)
WMAP = arg max

W
ln[P(W)∏

l

P(Yl |Xl, W)]

wi ← wi − ηλwi + η∑
l

Xl
i(Y

l − ̂P(Yl = 1 |Xl, W))

𝒩(0,σI)

Machine Learning | Virginia Tech© Debswapna Bha6acharya 14

∘ Consider learning f: X→ Y
∘ X is a vector of real-valued features <X1, X2, …,Xn>
∘ Y is boolean
∘ Assume all Xi's are conditionally independent given Y
∘ Model as Gaussian ~
∘ Model P(Y) as Bernoulli ()

∘ Given that, we can derive the parametric form of :

∘ where

∘ and

∘ And we can estimate W directly from the training data

P(Xi |Y = yk) 𝒩(μik, σi)
π

P(Y |X)

P(Y = 0 |X, W) =
1

1 + exp(w0 + ∑n
i=1 wixi)

P(Y = 1 |X, W) =
exp(w0 + ∑n

i=1 wixi)

1 + exp(w0 + ∑n
i=1 wixi)

The bo6om line

Machine Learning | Virginia Tech© Debswapna Bha6acharya 15

∘ Training classifiers involve estimating f: X→ Y or P(Y|X)

∘ Naïve Bayes
∘ Assumes some functional form for P(X|Y), P(Y)
∘ Estimates parameters of P(X|Y), P(Y) from training data
∘ Use Bayes rule to calculate P(Y|X)

∘ Logistic Regression
∘ Assumes some functional form for P(Y|X)
∘ Estimates parameters of P(Y|X) directly from training data

Use Naïve Bayes or Logistic Regression?

So far…

