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CS 4824/ECE 4424: 
Gradient-based Optimization
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Training logistic regression: MCLE
∘ We need to choose W  = <w0,…,wn> to                                                                                 

maximize the conditional likelihood of training data 

∘ where  

∘ and  

∘ Training data D = {<X1, Y1>,…, <XL, YL>} 

∘ Data likelihood is  

∘ Data conditional likelihood is  

∘ Therefore we need to estimate 

P(Y = 0 |X, W ) =
1

1 + exp(w0 + ∑n
i=1 wixi)

P(Y = 1 |X, W ) =
exp(w0 + ∑n

i=1 wixi)

1 + exp(w0 + ∑n
i=1 wixi)

∏
l

P( < Xl, Yl > |W )

∏
l

P(Yl |Xl, W )

WMCLE = arg max
W ∏

l

P(Yl |Xl, W )
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Expressing conditional log likelihood

∘  

∘ where  

∘ and  

∘         

               

              

l(W ) = ln∏
l

P(Yl |Xl, W ) = ∑
l

ln P(Yl |Xl, W )

P(Y = 0 |X, W ) =
1

1 + exp(w0 + ∑n
i=1 wixi)

P(Y = 1 |X, W ) =
exp(w0 + ∑n

i=1 wixi)

1 + exp(w0 + ∑n
i=1 wixi)

l(W ) = ∑
l

Yl ln P(Yl = 1 |Xl, W ) + (1 − Yl)ln P(Yl = 0 |Xl, W )

= ∑
l

Yl ln
P(Yl = 1 |Xl, W )
P(Yl = 0 |Xl, W )

+ ln P(Yl = 0 |Xl, W )

= ∑
l

Yl(w0 +
n

∑
i

wiXl
i ) − ln(1 + exp(w0 +

n

∑
i

wiXl
i ))
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Maximizing conditional log likelihood

∘  

               

∘ Good news: l(W) is a concave function of W 

∘ Bad news: no closed-form solution to maximize l(W) 

l(W) = ln∏
l

P(Yl |Xl, W)

= ∑
l

Yl(w0 +
n

∑
i

wiXl
i) − ln(1 + exp(w0 +

n

∑
i

wiXl
i))
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∘ Gradient  

∘ Training Rule:  

∘ i.e. 

∇E( ⃗w ) = [
∂E
∂w0

,
∂E
∂w1

, . . . ,
∂E
∂wn

]

⃗w (i+1) ← ⃗w i + η∇E( ⃗w )

Δwi = η
∂E
∂wi

Gradient ascent
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∘ Gradient  

∘ Training Rule:  

∘ i.e. 

∇E( ⃗w ) = [
∂E
∂w0

,
∂E
∂w1

, . . . ,
∂E
∂wn

]

⃗w (i+1) ← ⃗w i + η∇E( ⃗w )

Δwi = η
∂E
∂wi

Gradient ascent
E( ⃗W)

w2

w1
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Maximizing conditional log likelihood via gradient ascent

∘  

               

∘  

∘ Gradient ascent algorithm: iterate until change <  

∘  i repeat          

∘ assume              for  

l(W ) = ln∏
l

P(Yl |Xl, W )

= ∑
l

Yl(w0 +
n

∑
i

wiXl
i ) − ln(1 + exp(w0 +

n

∑
i

wiXl
i ))

∂l(W )
∂wi

= ∑
l

Xl
i(Y

l − ̂P(Yl = 1 |Xl, W ))

ε

∀ wi ← wi + η∑
l

Xl
i(Y

l − ̂P(Yl = 1 |Xl, W ))

X0 = 1 w0 step size (a.k.a. learning rate)
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h6ps://yihui.org/animation/example/grad-desc/  

h6ps://blog.skz.dev/gradient-descent 

Demo Time 🙂

https://yihui.org/animation/example/grad-desc/
https://blog.skz.dev/gradient-descent
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Batch vs. Stochastic gradient
∘ Batch gradient: use   over the entire training set  

∘ Do until satisfied: 

∘ 1. Compute the gradient:  

∘ 2. Update the vector of parameters:  

∘ Stochastic gradient: use   over a single example   
∘ Do until satisfied: 

∘ 1. Choose (with replacement) a random training example  

∘ 2. Compute the gradient just for d:  

∘ 2. Update the vector of parameters:  
∘ Stochastic approximates Batch arbitrarily closely as  
∘ Stochastic is much faster than Batch when D is very large 
∘ An intermediate approach is to use a subset of D instead of just one single example d

∇ED( ⃗w ) D

∇ED( ⃗w ) = [
∂ED

∂w0
,

∂ED

∂w1
, . . . ,

∂ED

∂wn
]

⃗w (i+1) ← ⃗w i + η∇ED( ⃗w )

∇Ed( ⃗w ) d ∈ D

d ∈ D

∇Ed( ⃗w ) = [
∂Ed

∂w0
,

∂Ed

∂w1
, . . . ,

∂Ed

∂wn
]

⃗w (i+1) ← ⃗w i + η∇Ed( ⃗w )
η → 0
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Hyperparameters in gradient-based optimization

∘ Epoch: 
∘ An epoch refers to a full pass over the dataset 
∘ One epoch means that each sample in the training dataset has had an opportunity to 

update the internal model parameters 
∘ The number of epochs is the number of complete passes through the training dataset 
∘ The number of epochs can be set to an integer value between one and infinity 
∘ You can run the algorithm for as long as you like and even stop it using other criteria 

besides a fixed number of epochs. 

∘ Batch size: 
∘ Batch size is a number of samples processed before the model is updated 
∘ An epoch is comprised of one or more batches 
∘ The size of a batch must be more than or equal to one and less than or equal to the 

number of samples in the training dataset 

∘ There are no magic rules for how to configure these hyperparameters. You may try 
different values and see what works best for your problem.
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We looked at M(C)LE, but what about MAP?

∘ One common approach is to define priors on W 
∘ Normal distribution, zero mean, identity covariance 

∘ Helps avoid very large weights and overfi6ing 

∘ Therefore we can estimate 
 

∘ Let’s assume Gaussian prior: W ~  

WMAP = arg max
W

ln[P(W)∏
l

P(Yl |Xl, W)]

𝒩(0,σI)
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M(C)LE vs MAP
∘ Maximum (conditional) likelihood estimate 

∘  

              

∘ Maximum a posteriori estimate with prior  W ~  

∘  

            
              

WMCLE = arg max
W

ln∏
l

P(Yl |Xl, W)

wi ← wi + η∑
l

Xl
i(Y

l − ̂P(Yl = 1 |Xl, W))

𝒩(0,σI)
WMAP = arg max

W
ln[P(W)∏

l

P(Yl |Xl, W)]

wi ← wi − ηλwi + η∑
l

Xl
i(Y

l − ̂P(Yl = 1 |Xl, W))
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MAP estimates and regularization
∘ Maximum a posteriori estimate with prior  W ~  

∘  

            
               

∘ Called a “regularization” term 
∘ Helps reduce overfi6ing, especially for sparse data situations 
∘ Keeps weights near zero with prior  W ~ , or whatever the 

prior suggests 
∘ Used very frequently in logistic regression 

𝒩(0,σI)
WMAP = arg max

W
ln[P(W)∏

l

P(Yl |Xl, W)]

wi ← wi − ηλwi + η∑
l

Xl
i(Y

l − ̂P(Yl = 1 |Xl, W))

𝒩(0,σI)
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∘ Consider learning f: X→ Y 
∘ X is a vector of real-valued features <X1, X2, …,Xn> 
∘ Y is boolean  
∘ Assume all Xi's are conditionally independent given Y 
∘ Model  as Gaussian ~  
∘ Model P(Y) as Bernoulli ( ) 

∘ Given that, we can derive the parametric form of : 

∘ where  

∘ and  

∘ And we can estimate W directly from the training data

P(Xi |Y = yk) 𝒩(μik, σi)
π

P(Y |X)

P(Y = 0 |X, W ) =
1

1 + exp(w0 + ∑n
i=1 wixi)

P(Y = 1 |X, W ) =
exp(w0 + ∑n

i=1 wixi)

1 + exp(w0 + ∑n
i=1 wixi)

The bo6om line
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∘ Training classifiers involve estimating f: X→ Y or P(Y|X) 

∘ Naïve Bayes 
∘ Assumes some functional form for P(X|Y), P(Y) 
∘ Estimates parameters of P(X|Y), P(Y) from training data 
∘ Use Bayes rule to calculate P(Y|X) 

∘ Logistic Regression 
∘ Assumes some functional form for P(Y|X) 
∘ Estimates parameters of P(Y|X) directly from training data 

Use Naïve Bayes or Logistic Regression?

So far…


