# CS 4824/ECE 4424: Gradient-based Optimization

Acknowledgement:

Many of these slides are derived from Tom Mitchell, Pascal Poupart, Pieter Abbeel, Eric Eaton, Carlos Guestrin, William Cohen, and Andrew Moore.

### Training logistic regression: MCLE

 We need to choose W = <w<sub>0</sub>,...,w<sub>n</sub>> to <u>maximize the conditional likelihood</u> of training data

where 
$$P(Y = 0 | X, W) = \frac{1}{1 + exp(w_0 + \sum_{i=1}^{n} w_i x_i)}$$
  
and  $P(Y = 1 | X, W) = \frac{exp(w_0 + \sum_{i=1}^{n} w_i x_i)}{1 + exp(w_0 + \sum_{i=1}^{n} w_i x_i)}$ 

Training data D = {1, Y<sup>1</sup>>,..., L, Y<sup>L</sup>>}
Data likelihood is 
$$\prod_{l} P(< X^{l}, Y^{l} > | W)$$
Data conditional likelihood is 
$$\prod_{l} P(Y^{l} | X^{l}, W)$$
Therefore we need to estimate  $W_{MCLE} = \arg \max_{W} \prod_{l} P(Y^{l} | X^{l}, W)$ 

© Debswapna Bhattacharya

### Expressing conditional log likelihood

$$\int_{l} \frac{l(W)}{W} = \ln \prod_{l} P(Y^{l} | X^{l}, W) = \sum_{l} \ln P(Y^{l} | X^{l}, W)$$
  
where  $P(Y = 0 | X, W) = \frac{1}{1 + exp(w_{0} + \sum_{i=1}^{n} w_{i}x_{i})}$   
and  $P(Y = 1 | X, W) = \frac{exp(w_{0} + \sum_{i=1}^{n} w_{i}x_{i})}{1 + exp(w_{0} + \sum_{i=1}^{n} w_{i}x_{i})}$ 

$$\int_{0}^{\infty} l(W) = \sum_{l}^{N} Y^{l} \ln P(Y^{l} = 1 | X^{l}, W) + (1 - Y^{l}) \ln P(Y^{l} = 0 | X^{l}, W)$$

$$= \sum_{l}^{N} Y^{l} \ln \frac{P(Y^{l} = 1 | X^{l}, W)}{P(Y^{l} = 0 | X^{l}, W)} + \ln P(Y^{l} = 0 | X^{l}, W)$$

$$= \sum_{l}^{N} Y^{l}(w_{0} + \sum_{i}^{n} w_{i}X_{i}^{l}) - \ln(1 + exp(w_{0} + \sum_{i}^{n} w_{i}X_{i}^{l}))$$

© Debswapna Bhattacharya

Machine Learning | Virginia Tech

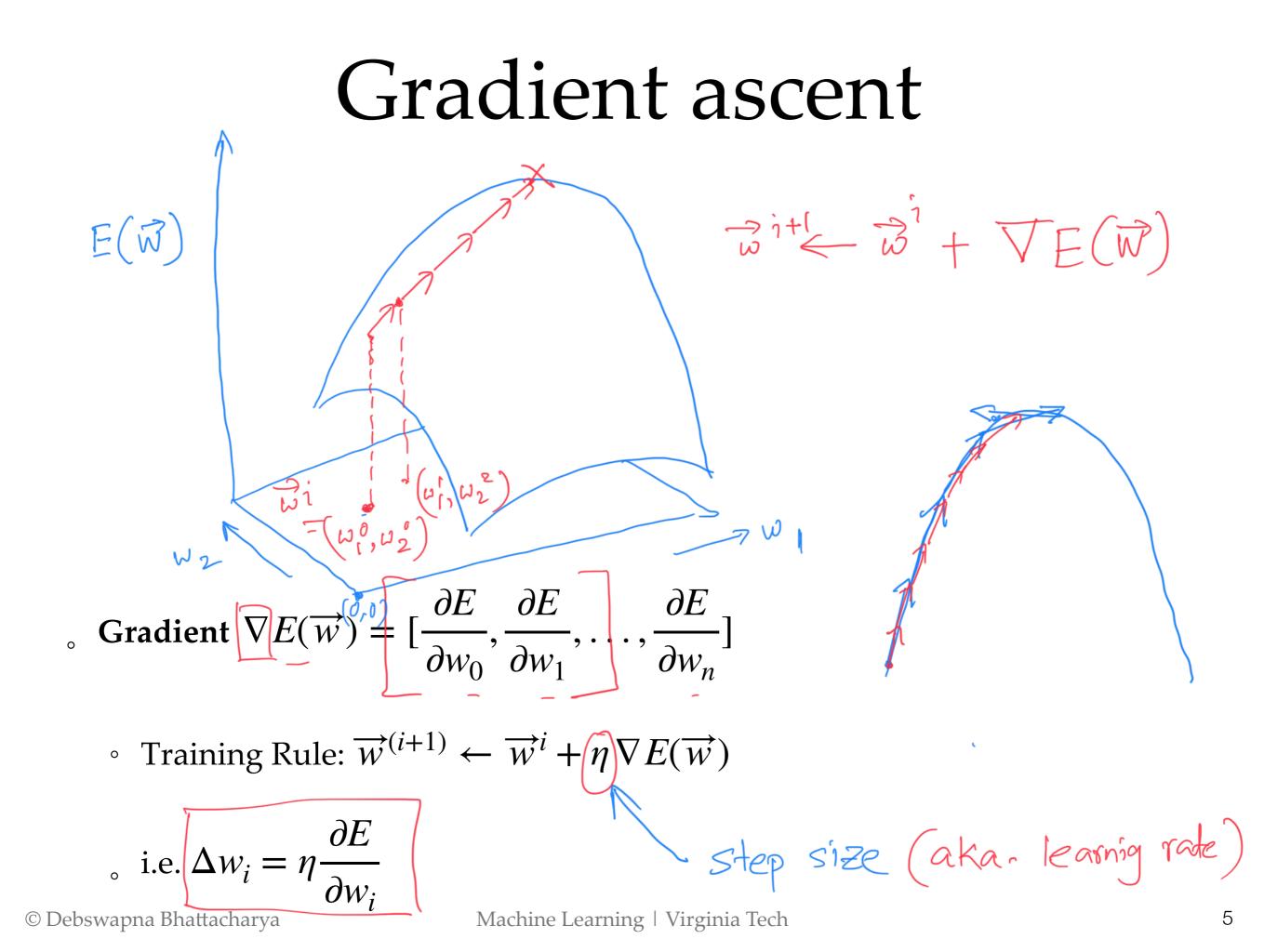
Maximizing conditional log likelihood  

$$l(W) = \ln \prod_{l} P(Y^{l} | X^{l}, W)$$

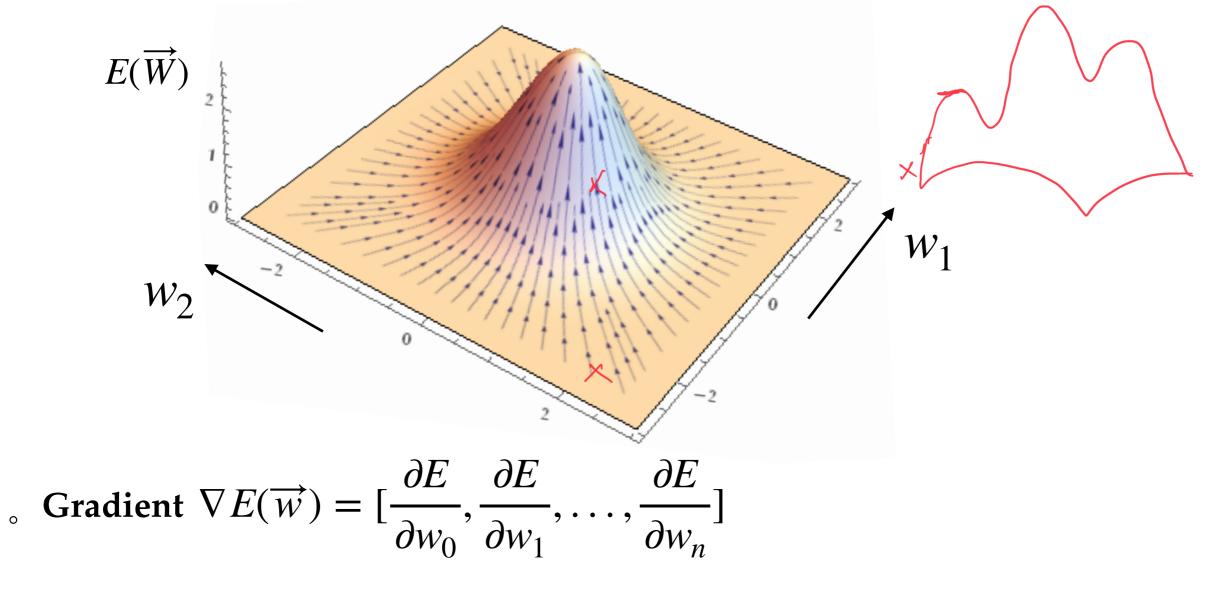
$$= \sum_{l} Y^{l}(w_{0} + \sum_{i}^{n} w_{i}X_{i}^{l}) - \ln(1 + exp(w_{0} + \sum_{i}^{n} w_{i}X_{i}^{l}))$$

• **Good news**: *l*(*W*) is a concave function of *W* 

• **Bad news**: no closed-form solution to maximize *l*(*W*)



## Gradient ascent



• Training Rule: 
$$\overrightarrow{w}^{(i+1)} \leftarrow \overrightarrow{w}^i + \eta \nabla E(\overrightarrow{w})$$

• i.e. 
$$\Delta w_i = \eta \frac{\partial E}{\partial w_i}$$

© Debswapna Bhattacharya

Machine Learning | Virginia Tech

#### Maximizing conditional log likelihood via gradient ascent

$$l(W) = \ln \prod_{l} P(Y^{l} | X^{l}, W)$$

$$= \sum_{l} Y^{l}(w_{0} + \sum_{i}^{n} w_{i}X_{i}^{l}) - \ln(1 + exp(w_{0} + \sum_{i}^{n} w_{i}X_{i}^{l}))$$

$$\frac{\partial l(W)}{\partial w_{i}} = \sum_{l} X_{i}^{l}(Y^{l} - \hat{P}(Y^{l} = 1 | X^{l}, W))$$

$$\frac{\partial l(W)}{\partial w_{i}} = \sum_{l} X_{i}^{l}(Y^{l} - \hat{P}(Y^{l} = 1 | X^{l}, W))$$

$$\frac{\partial l(W)}{\partial w_{i}} = \sum_{l} X_{i}^{l}(Y^{l} - \hat{P}(Y^{l} = 1 | X^{l}, W))$$

$$\frac{\partial l(W)}{\partial w_{i}} = \sum_{l} X_{i}^{l}(Y^{l} - \hat{P}(Y^{l} = 1 | X^{l}, W))$$

$$\frac{\partial l(W)}{\partial w_{i}} = \sum_{l} X_{i}^{l}(Y^{l} - \hat{P}(Y^{l} = 1 | X^{l}, W))$$

$$\frac{\partial l(W)}{\partial w_{i}} = \sum_{l} X_{i}^{l}(Y^{l} - \hat{P}(Y^{l} = 1 | X^{l}, W))$$

$$\frac{\partial l(W)}{\partial w_{i}} = \sum_{l} X_{i}^{l}(Y^{l} - \hat{P}(Y^{l} = 1 | X^{l}, W))$$

$$\frac{\partial l(W)}{\partial w_{i}} = \sum_{l} X_{i}^{l}(Y^{l} - \hat{P}(Y^{l} = 1 | X^{l}, W))$$

$$\frac{\partial l(W)}{\partial w_{i}} = \sum_{l} X_{i}^{l}(Y^{l} - \hat{P}(Y^{l} = 1 | X^{l}, W))$$

$$\frac{\partial l(W)}{\partial w_{i}} = \sum_{l} X_{i}^{l}(Y^{l} - \hat{P}(Y^{l} = 1 | X^{l}, W))$$

$$\frac{\partial l(W)}{\partial w_{i}} = \sum_{l} X_{i}^{l}(Y^{l} - \hat{P}(Y^{l} = 1 | X^{l}, W))$$

$$\frac{\partial l(W)}{\partial w_{i}} = \sum_{l} X_{i}^{l}(Y^{l} - \hat{P}(Y^{l} = 1 | X^{l}, W))$$

$$\frac{\partial l(W)}{\partial w_{i}} = \sum_{l} X_{i}^{l}(Y^{l} - \hat{P}(Y^{l} = 1 | X^{l}, W))$$

$$\frac{\partial l(W)}{\partial w_{i}} = \sum_{l} X_{i}^{l}(Y^{l} - \hat{P}(Y^{l} = 1 | X^{l}, W))$$



### https://yihui.org/animation/example/grad-desc/

https://blog.skz.dev/gradient-descent

# Batch vs. Stochastic gradient

- Batch gradient: use  $\nabla E_D(\overrightarrow{w})$  over the entire training set D
  - Do until satisfied:
    - <sup>°</sup> 1. Compute the gradient:  $\nabla E_D(\vec{w}) = \left[\frac{\partial E_D}{\partial w_0}, \frac{\partial E_D}{\partial w_1}, \dots, \frac{\partial E_D}{\partial w_n}\right]$
    - 2. Update the vector of parameters:  $\overrightarrow{w}^{(i+1)} \leftarrow \overrightarrow{w}^i + \eta \nabla E_D(\overrightarrow{w})$
- Stochastic gradient: use  $\nabla E_d(\vec{w})$  over a single example  $d \in D$ 
  - Do until satisfied:
    - 1. Choose (with replacement) a random training example  $d \in D$
    - ° 2. Compute the gradient just for d:  $\nabla E_d(\vec{w}) = \left[\frac{\partial E_d}{\partial w_0}, \frac{\partial E_d}{\partial w_1}, \dots, \frac{\partial E_d}{\partial w_n}\right]$
    - 2. Update the vector of parameters:  $\overrightarrow{w}^{(i+1)} \leftarrow \overrightarrow{w}^i + \eta \nabla E_d(\overrightarrow{w})$
- Stochastic approximates Batch arbitrarily closely as  $\eta 
  ightarrow 0$
- Stochastic is much faster than Batch when D is very large
- An intermediate approach is to use a subset of D instead of just one single example d

### Hyperparameters in gradient-based optimization

#### • Epoch:

- An epoch refers to a full pass over the dataset
- One epoch means that each sample in the training dataset has had an opportunity to update the internal model parameters
- The number of epochs is the number of complete passes through the training dataset
- The number of epochs can be set to an integer value between one and infinity
- You can run the algorithm for as long as you like and even stop it using other criteria besides a fixed number of epochs.

#### • Batch size:

- Batch size is a number of samples processed before the model is updated
- An epoch is comprised of one or more batches
- The size of a batch must be more than or equal to one and less than or equal to the number of samples in the training dataset
- There are no magic rules for how to configure these hyperparameters. You may try
  different values and see what works best for your problem.

### We looked at M(C)LE, but what about MAP?

- One common approach is to define priors on W
  Normal distribution, zero mean, identity covariance
- Helps avoid very large weights and overfitting
- Therefore we can estimate  $W_{MAP} = \arg \max_{W} ln[P(W) \prod_{l} P(Y^{l} | X^{l}, W)]$ • Let's assume Gaussian prior:  $W \sim \mathcal{N}(0, \sigma I)$

# M(C)LE vs MAP

• Maximum (conditional) likelihood estimate  $W_{MCLE} = \arg \max_{W} \ln \prod_{V} P(Y^{l} | X^{l}, W)$ 

$$w_i \leftarrow w_i + \eta \sum_l X_i^l (Y^l - \hat{P}(Y^l = 1 \mid X^l, W))$$

• Maximum a posteriori estimate with prior  $W \sim \mathcal{N}(0,\sigma I)$ •  $W_{MAP} = \arg \max_{W} \ln[P(W) \prod_{l} P(Y^{l} | X^{l}, W)]$ •  $\chi \in \mathcal{Z}_{0,l} \mathcal{Z}_{1}$ •  $\chi = 0.0001$ •  $\chi = 0.0005$ 

$$\bigvee_{i} \leftarrow w_{i} \left[ -\eta \lambda w_{i} + \eta \sum_{l} X_{i}^{l} (Y^{l} - \hat{P}(Y^{l} = 1 | X^{l}, W)) \right]$$

1

## MAP estimates and regularization

• Maximum a posteriori estimate with prior  $W \sim \mathcal{N}(0,\sigma I)$ •  $W_{MAP} = \arg \max_{W} \ln[P(W) \prod_{I} P(Y^{l} | X^{l}, W)]$ 

$$w_i \leftarrow w_i - \eta \lambda w_i + \eta \sum_l X_i^l (Y^l - \hat{P}(Y^l = 1 | X^l, W))$$

- Called a "regularization" term
- Helps reduce overfitting, especially for sparse data situations
- Keeps weights near zero with prior  $W \sim \mathcal{N}(0, \sigma I)$ , or whatever the prior suggests
- Used very frequently in logistic regression

## The bottom line

- Consider learning  $f: X \rightarrow Y$ 
  - X is a vector of real-valued features <X<sub>1</sub>, X<sub>2</sub>, ..., X<sub>n</sub>>
  - Y is boolean
  - Assume all X<sub>i</sub>'s are conditionally independent given Y
  - Model  $P(X_i | Y = y_k)$  as Gaussian ~  $\mathcal{N}(\mu_{ik}, \sigma_i)$
  - Model P(Y) as Bernoulli ( $\pi$ )
- Given that, we can derive the parametric form of P(Y|X):

• where 
$$P(Y = 0 | X, W) = \frac{1}{1 + exp(w_0 + \sum_{i=1}^{n} w_i x_i)}$$

and 
$$P(Y = 1 | X, W) = \frac{exp(w_0 + \sum_{i=1}^{n} w_i x_i)}{1 + exp(w_0 + \sum_{i=1}^{n} w_i x_i)}$$

• And we can estimate W directly from the training data

0

## So far...

- Training classifiers involve estimating  $f: X \rightarrow Y$  or P(Y | X)
- Naïve Bayes
  - Assumes some functional form for P(X|Y), P(Y)
  - Estimates parameters of P(X|Y), P(Y) from training data
  - Use Bayes rule to calculate P(Y|X)
- Logistic Regression
  - Assumes some functional form for P(Y|X)
  - Estimates parameters of P(Y|X) directly from training data

## Use Naïve Bayes or Logistic Regression?