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Background

Protein Complex Interfacial region

https://www.rcsb.org/structure/1ACB

Crystal structure of 1ACB
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Motivation

Model section Model refinement

Helps in accurately guiding the process of protein complex prediction

Pool of candidate structures

Best model

Refinement

Recycling



Approach

➢ Dataset curation

➢ Feature extraction

➢ Model training

➢ Quality estimation



Dataset

TestingTraining

➢ Dockground docking 
decoy set v2

➢ 180 complex targets

➢ ~18000 docking decoys

➢ Dockground docking 
decoy set v1

➢ 23 complex targets

➢ ~2600 docking decoys



Feature extraction
➢ Node features (30)

➢ Amino acids encoding (10)

➢ Secondary structure (6)

➢ solvent accessibility encoding (4)

➢ Relative residue positioning (2)

➢ MSA-based features (NEFF) (4)

➢ Dihedral angles (4)

➢ Edge features (23)

➢ Orientations between connecting nodes (theta, omega, phi) (6)

➢ Edge distance encoding from 2 – 10 Å (17)



Learning algorithm

➢ Graph neural network

➢ Ideal for learning for graph representation

➢ Regression problem



Graph attention network

GCN embedding

GAT embedding

Veličković,P. et al., arXiv (2018) 



Multi-head attention



Quality estimation

Target label

➢ For each edge (local 
quality)

➢ di = 10

➢ Global quality



Flowchart



Model training

➢ Number of multi-headed GAT layers: 2

➢ Number of heads: 8

➢ Hidden dimension: 32

➢ Learning rate: 0.001

➢ Weight decay: 0.0005

➢ Loss: Mean Squared Error (MSE) with sum reduction

➢ Optimizer: Adam

➢ Number of batch: ~80

➢ Number of epochs: 500

➢ Patience: 40



Evaluation metrices

➢ Ground truth:

➢ Observed s-score w.r.t iRMSD

➢ Pearson correlation between globalquality and the s-score

➢ Spearman correlation between globalquality and the s-score

➢ Kendall’s Tau correlation between globalquality and the s-
score



Competing methods

➢ DOVE_ATOM20

➢ DOVE_ATOM40

➢ DOVE_GOAP

➢ DOVE_ATOM_GOAP



Results

Dataset Method Avg. r
Avg. 

ρ
Avg. τ Global r

Global 

ρ

Global 

τ

Dockground

v1

This work 0.441 0.314 0.224 0.531 0.593 0.421

DOVE_ATOM20 0.195 0.130 0.089 0.360 0.274 0.185

DOVE_ATOM40 0.181 0.157 0.111 0.244 0.130 0.087

DOVE_GOAP 0.084 0.140 0.094 -0.059 -0.085 -0.056

DOVE_ATOM_GOAP 0.263 0.258 0.180 0.227 0.101 0.067



Contribution of GAT

Dataset Method Avg. r
Avg. 

ρ
Avg. τ Global r

Global 

ρ

Global 

τ

Dockground

v1

GAT (This work) 0.441 0.314 0.224 0.531 0.593 0.421

GCN 0.284 0.223 0.156 0.412 0.451 0.311



Discussion and future plan

➢ Variable length graph

➢ Global and local quality

➢ Hyperparameter tuning

➢ Additional similar network

➢ Additional dataset

➢ Competing methods

➢ Additional accuracy metrics and case study



Challenges

➢ Variable length graph

➢ Regression problem



Reviewers' comments

➢ “It is representing only the interfacial region as a graph. But in decoys, there will 

be some orientations, where interface regions would be completely different 

compared to that of the corresponding native. I am wondering, if considering 

the interfacial region would cause some form of information loss. Therefore, 

considering the whole complex as a graph could provide more information 

during the learning process.” (Computationally demanding, Pre-trained model, 

learning method, QA)

➢ “A visualization of the problem/dataset would be helpful to show the reader 

what exactly you'll be focusing on within the dataset.” (Interfacial region, case 

study)

➢ “Can some node features be directly extracted from the interface coordinates 

themselves?” (Edge features, agreement)
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