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Introduction • Hi-C experiment

• In these Heatmaps, most of the chromatin folding 
patterns in the nucleus can be observed. 

• Topologically Associating Domains (TAD), A/B 
compartments, loops, and stripes are some of the 
most well-known structural patterns.
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Problem

• In beads-on-a-string models of chromatin, the curves 
which show the dependence of the Euclidean spatial 
inter-particle distance of chromatin chains on the 
genomic distance play an important role to reveal the 
information of condensation of chromatin across 
whole genome.

• We have a computational modeling for chromatin in 
drosophila genome based on MD simulation[2] which 
we can extract these curves from the distance 
matrices of position of beads on ensemble of 
chromatin chain.

• What I am interested in is whether we 
can obtain Hi-C folding patterns 
following training the data with CNN?

?

Each curve represents one specific 

trajectory in the MD simulation.



Milestone 1

dataset

• Provide data set as the symmetric square matrices 
• We have 18 trajectories that show different chromosome 

configurations in Drosophila. In molecular dynamic 
simulation of chromatin chains in the Drosophila genome, 
we have 400K different configurations that correspond to 
400K different timesteps for each trajectory. [2]



Milestone 2

• Training the 2D matrices using 
Convolutional Neural Networks
(ImageNet[3], LeNet [4] or 
AlexNet[5]).

• Training the 2D matrices using one of 
VGG[6], InceptionNet[7, 8, 9] 
ResNet[10] and DenseNet[11].



Milestone 3

Increasing the resolution 

using HiCNN[12] or HiCNN2[13] approaches



Milestone 4

• Metrics for evaluation: 

Comparing the result’s mean squared error and Pearson’s correlation 
coefficients with experimental high-resolution Hi-C data
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