Developing a generative adversarial network-based method for longitudinal microbiome data imputation

CS6824 project proposal

Presenter: Joung Min Choi

Microbiome studies

- The collection of microorganisms living in a certain environment
- Key role in complex disease such as obesity, diabetes, cancer, and allergy outcomes
- Potential as biomarkers for disease diagnosis or as therapeutic targets for treatment

Longitudinal studies of microbiome

- Microbiome can be altered over time by infections or medical interventions
- Providing insights into the changes of microbiome composition over time and the association with disease outcomes

Major challenges Limited sample size due to the uneven number of timepoints along the longitudinal timeline of different subjects

Generative adversarial network (GAN)

- Widely adopted in various fields to address the lack of data issue
- Data augmentation framework to improve classification tasks by reducing overfitting
- Recently, being utilized for imputation of missing values for a multivariate time-series with RNN

- Applications of GAN in microbiome study
 - MB-GAN (2020): a simulation framework for microbiome data based on GAN
 - DeepBioGen (2021): a data augmentation procedure that characterizes visual patterns of sequencing profiles
 - ✓ But still, the presented methods only simulate single time point microbiome data
 - ✓ Data imputation for longitudinal microbiome data have not been addressed, yet.

- A deep learning-based method for longitudinal microbiome data imputation based on GAN
 - Help the researcher to utilize the incomplete longitudinal microbiome datasets
 - Promote the future microbiome analysis
 - Improve the accuracy for predicting the disease outcomes

1. Data collection and preprocessing

- Public longitudinal microbiome datasets
 - 1) DIABIMMUNE three-country cohort dataset: 16S rRNA
 - 2) BONUSC-DF dataset: shotgun sequencing dataset

Preprocessing

- Species-level relative abundance profiles
 - : The percentages of the species in the total observed species
- Centered log-ratio transformation

- 2. Developing the GAN-based model for longitudinal data imputation
 - 1) Implementation of the biRNN-based GAN to generate samples by training the temporal relations between the observations
 - Related papers for GAN-based time-series data imputation
 - "Multivariate Time Series Imputation with Generative Adversarial Networks" (*NeurIPS*, 2018)
 - "E2gan: End-to-end generative adversarial network for multivariate time series imputation" (AAAI, 2019)
 - "Time-series imputation and prediction with bi-directional generative adversarial networks" (*arXiv*, 2020)
 - "Missing value imputation in multivariate time series with end-to-end generative adversarial networks" (Information Sciences, 2021)

2) Incorporating the taxonomy relationship based on the phylogenetic tree

- Related papers for encoding the phylogenetic information by CNN
 - "PhyLoSTM: a novel deep learning model on disease prediction from longitudinal microbiome data" (*Bioinformatics*, 2021)
 - "A novel deep learning method for predictive modeling of microbiome data" (Briefings in Bioinformatics, 2021)

3) Optimization of the hyperparameters for the model based on the grid search

• Number of hidden nodes, hidden layers, learning rate and learning epoch

- 3. Performance evaluation of our proposed model
 - Baseline methods
 - 1) Simple imputation methods
 - Mean, Median
 - 2) Traditional time-series imputation
 - Linear curve fitting, Cubic curve fitting
 - Moving-window-based imputation
 - 3) Widely-used imputation method for longitudinal dataset
 - Multiple imputation by chained equation (MICE)
 - Last Observation Carried Forward (LOCF)

Experiments

- 10-fold cross-validation using test dataset as missing data
- Evaluation of performance changes by increasing the missing rate
- Validation of performance improvement for predicting the disease outcome when training the model by adding the incomplete dataset having missing samples for some time points with imputation

Performance evaluation metric

- Mean absolute error (MAE)
- Classification accuracy and area under the ROC curve (AUC)

Project timeline

- Data collection and preprocessing (~ March 12th) (DONE)
- Implementation of the basic architecture of the biRNN-based GAN model (~ March 12th) (DONE)
- Add feature extraction module to GAN to incorporate the phylogenetic tree information (~ March 20th)
- Hyperparameter optimization (~ March 31th)
- Performance evaluation (~ April 13th)