Developing a generative adversarial network-based method for longitudinal microbiome data imputation

CS6824 project proposal

Presenter: Joung Min Choi
Background and Motivation

- **Microbiome studies**
 - The collection of microorganisms living in a certain environment
 - Key role in complex disease such as obesity, diabetes, cancer, and allergy outcomes
 - Potential as biomarkers for disease diagnosis or as therapeutic targets for treatment

- **Longitudinal studies of microbiome**
 - Microbiome can be altered over time by infections or medical interventions
 - Providing insights into the changes of microbiome composition over time and the association with disease outcomes

 - **Major challenges**
 - Limited sample size due to the uneven number of timepoints along the longitudinal timeline of different subjects

Figure reference: https://www.scribbr.com/methodology/longitudinal-study/
Background and Motivation

- **Generative adversarial network (GAN)**
 - Widely adopted in various fields to address the lack of data issue
 - Data augmentation framework to improve classification tasks by reducing overfitting
 - Recently, being utilized for imputation of missing values for a multivariate time-series with RNN

- **Applications of GAN in microbiome study**
 - MB-GAN (2020): a simulation framework for microbiome data based on GAN
 - DeepBioGen (2021): a data augmentation procedure that characterizes visual patterns of sequencing profiles

✔ But still, the presented methods only simulate single time point microbiome data
✔ Data imputation for longitudinal microbiome data have not been addressed, yet.
Proposed approach

- A deep learning-based method for longitudinal microbiome data imputation based on GAN

 - Help the researcher to utilize the incomplete longitudinal microbiome datasets
 - Promote the future microbiome analysis
 - Improve the accuracy for predicting the disease outcomes
Research Plan

1. Data collection and preprocessing
 - Public longitudinal microbiome datasets
 1) DIABIMMUNE three-country cohort dataset: 16S rRNA
 2) BONUSC-DF dataset: shotgun sequencing dataset
 - Preprocessing
 • Species-level relative abundance profiles
 : The percentages of the species in the total observed species
 • Centered log-ratio transformation
2. Developing the GAN-based model for longitudinal data imputation

1) Implementation of the biRNN-based GAN to generate samples by training the temporal relations between the observations

- Related papers for GAN-based time-series data imputation
 - “Multivariate Time Series Imputation with Generative Adversarial Networks” (*NeurIPS*, 2018)
 - “Time-series imputation and prediction with bi-directional generative adversarial networks” (*arXiv*, 2020)
 - “Missing value imputation in multivariate time series with end-to-end generative adversarial networks” (*Information Sciences*, 2021)
Research Plan

2) Incorporating the taxonomy relationship based on the phylogenetic tree
 - Related papers for encoding the phylogenetic information by CNN
 - “PhyLoSTM: a novel deep learning model on disease prediction from longitudinal microbiome data” (Bioinformatics, 2021)
 - “A novel deep learning method for predictive modeling of microbiome data” (Briefings in Bioinformatics, 2021)

3) Optimization of the hyperparameters for the model based on the grid search
 - Number of hidden nodes, hidden layers, learning rate and learning epoch
Research Plan

3. Performance evaluation of our proposed model
 ▪ Baseline methods
 1) Simple imputation methods
 • Mean, Median

 2) Traditional time-series imputation
 • Linear curve fitting, Cubic curve fitting
 • Moving-window-based imputation

 3) Widely-used imputation method for longitudinal dataset
 • Multiple imputation by chained equation (MICE)
 • Last Observation Carried Forward (LOCF)
Research Plan

- **Experiments**
 - 10-fold cross-validation using test dataset as missing data
 - Evaluation of performance changes by increasing the missing rate
 - Validation of performance improvement for predicting the disease outcome when training the model by adding the incomplete dataset having missing samples for some time points with imputation

- **Performance evaluation metric**
 - Mean absolute error (MAE)
 - Classification accuracy and area under the ROC curve (AUC)
Project timeline

- Data collection and preprocessing (~ March 12th) (DONE)
- Implementation of the basic architecture of the biRNN-based GAN model (~ March 12th) (DONE)
- Add feature extraction module to GAN to incorporate the phylogenetic tree information (~ March 20th)
- Hyperparameter optimization (~ March 31th)
- Performance evaluation (~ April 13th)