
AI-powered Molecular Modeling | Virginia Tech© Debswapna Bha<acharya

CS 6824: 
Biological Language Models: 

The Gold Mine

1

Acknowledgement:  
Many of the images in the slides are derived from 
images.google.com or other publicly available sources.



AI-powered Molecular Modeling | Virginia Tech© Debswapna Bha<acharya

The Rise of Pre-trained Protein Language Model

https://www.biorxiv.org/content/10.1101/2022.07.21.500999v1

AlphaFold2 needs as input evolutionary data in the form of multiple sequence alignments (MSAs). 

However, MSAs of homologous proteins are not always available, such as with orphan proteins or fast-
evolving proteins like antibodies 

A protein typically folds in a natural seMing from its primary amino acid sequence into its three-dimensional 
structure, suggesting that evolutionary information and MSAs should not be necessary to predict a protein’s 
folded form.  

How to accurately predict the protein 3D structures solely based on the protein sequences without relying on 
the MSA information? 

Constructing a general pre-trained protein language model (PLM) suitable for various protein tasks.
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https://www.biorxiv.org/content/10.1101/2022.07.21.500999v1
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OmegaPLM

https://www.biorxiv.org/content/10.1101/2022.07.21.500999v1

It was hypothesized that akin to extracting grammatical structure from large collections of natural language 
corpuses, predicting protein structure from protein sequence databases should be possible without having to 
rely on aligned MSAs.  

It was reasoned that the transformer’s aMention mechanism used to model long-range relationships in natural 
language sequences should also be applicable to extracting correlations from evolutionary relationships 
present in protein sequences 

In contrast to natural languages, proteins are more than merely strings; they are physical chains of amino acids 
that fold into three-dimensional structures. Thus, to model 3D protein structures, we were motivated to 
incorporate geometric intuition into the transformer architecture design.



AI-powered Molecular Modeling | Virginia Tech© Debswapna Bha<acharya 5

The OmegaFold System

Model architecture of OmegaFold. The primary protein sequence is first fed into a pretrained protein 
language model (OmegaPLM) to obtain residue-level node embeddings and residue-residue 
pairwise embeddings. A stack of Geoformer layers then iteratively updates these embeddings to 
improve their geometric consistency. Lastly, a structure module predicts the 3D protein structures 
from the final embeddings. The predicted structure and the embeddings could be fed again as input 
into another cycle through a recycling procedure to predict a more refined structure.  

https://www.biorxiv.org/content/10.1101/2022.07.21.500999v1
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OmegaPLM Architecture 

Instead of using multi-headed self-aJention (MHSA), adopt the Gated AJention Unit (GAU). 

We apply the gate operation after the aJention aggregation and replace the conventional softmax(·) 
function with relu2(·) to aggregate the pairwise logits. Use an extra gating vector  

where dv is the dimensionality of the value vector. 

https://www.biorxiv.org/content/10.1101/2022.07.21.500999v1
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OmegaPLM Objective

https://www.biorxiv.org/content/10.1101/2022.07.21.500999v1

BERT loss. For each sequence, 15% tokens are selected as targets to be predicted, 80% of which are replaced 
with a [mask] token, 10% of which are replaced with a random amino acid, and the final 10% stay what they 
are. 

SpanBERT-like loss. We sample the span length from Poisson distribution with λ = 7 and clip the sampled 
value at 5 and 8 and then mask the tokens consecutively according to the span length. Unlike SpanBERT, we 
still use the output embeddings from the corresponding tokens to perform prediction rather than the boundary 
tokens of the spans. 

Sequential masking, where we mask either the first half or the second half of the sequence, akin to Prefix 
Language Modeling 

Moreover, they assign different weights for these loss terms. The weights for the first two loss functions are 
0.45 and the last one is 0.1. 

Focal loss, they observe that many of the amino acids can be accurately predicted with its short-range sequence 
context. This creates an easy prediction task for the model to learn and causes the model to overly focus on 
short-range relations. To address this problem, we adopt the focal loss to down-weight the easy targets and 
make the model focus more on capturing the long range relationships among different amino acids.
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OmegaPLM Hyperparameters 

https://www.biorxiv.org/content/10.1101/2022.07.21.500999v1

OmegaPLM is implemented in PyTorch and trained for 2,560 GPU Nvidia A100 80G days. In the 
hardware setup, we find the training process is accelerated by incorporating the PowerSGD gradient 
compression with rank 32 to reduce the communication loads across different GPUs. Empirically we 
find PowerSGD improve 30% of the training speed. Though this compression introduces noise into 
the gradients, we find such noise inconsequential compared to the speed gain in convergence.
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Geoformer Architecture

https://www.biorxiv.org/content/10.1101/2022.07.21.500999v1
In the last 8 layers of Geoformer, they first translate the inferred node and edge representation of a protein to a temporal 3D 
structure by using the StructureModule function implemented by AlphaFold2. xi is the coordinates for the atoms in amino 
acid i. They then translate the temporal 3D structure back to the high dimensional space by using the 3Dprojection function 
whose outputs have the same dimensionality as the wij. In this way, the updated edge representation contains the 
information indirectly encoded from the 3D space. Another EdgeA3ention function is applied to achieve geometric 
consistency for the newly updated wij. Eventually, both node representation ni and edge representation wij from the last 
layer are used to predict the 3D coordinates and connected to the loss functions.

For each node, Geoformer first aggregates the information 
from all the other nodes to generate a basic node 
representation ((NodeAHention and NodeTransition ). They 
update the node embedding {ni} based on two factors: 1) 
the aHention between node i and any other node j and 2) 
the edge embedding {wij} capturing the interactions 
between i and j in a more direct way. Node2Edge produce 
another temporal edge representation solely based on the 
node representation inferred from the previous step. 
Similar to NodeA3ention, they also update edge 
representations {wij} based on all the other edges using a 
transformer-based model EdgeA3ention, which is also the 
function we rely on to achieve geometric consistency in the 
high dimensional space.  

They  repeat this process 50 times to generate both node 
and edge representations for each residue and residue pair. 
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Geoformer Node and Edge Updates

https://www.biorxiv.org/content/10.1101/2022.07.21.500999v1

The NodeAHention function provides expressive node representations by integrating all the node and edge representations 
using the self-aHention layers.

EdgeA3ention achieves geometric consistency by simultaneously considering all the other edge embeddings wij The edge 
embedding wij is updated based on various types of interactions involving a third node t. Note that AlphaFold2 uses four 
triangular multiplicative operations
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OmegaFold Results - Benchmark

(B) Evaluations on recent CAMEO an CASP targets. Our predictions (blue) for 7DKI:A, 7EBQ:A, 7ED6:A from CAMEO and T1005, 
T1056 from CASP are highly accurate according to the experimental structures (green). Figures on the right show held-out test 
results on 146 CAMEO targets and 29 challenging CASP targets. OmegaFold significantly outperforms AlphaFold2 and 
RoseTTAFold when only single sequences are provided as input on both standard CAMEO Local Distance Difference Tests (LDDTs) 
and CASP TM-scores; OmegaFold performs comparably to AlphaFold2 and RoseTTAFold on the CASP and CAMEO test cases 
when the standard MSAs are used as input. (C) Runtime analysis. OmegaFold is significantly faster than AlphaFold2 (ColabFold 
version) on single-chain proteins with typical lengths of around 250, 500 and 1000 residues. ColabFold was used to further decrease 
the runtimes of the MSA search time (pink) and model inference time (red).

https://www.biorxiv.org/content/10.1101/2022.07.21.500999v1
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OmegaFold Results - Antibody and Orphan Proteins

(A) Antibody CDRH3 regions. The scaMer plot depicts the comparison on 33 recently released nanobody and antibody proteins with 
highresolution experimental structures. Overall, OmegaFold predictions (RMSD=2.12Å) are significantly beMer than AlphaFold2 
predictions (RMSD=2.98 Å), with a P-value of 0.0017.(B) Orphan proteins. The scaMer plot shows comparisons on 19 recently 
released orphan proteins with no homologous sequences identified. Overall, OmegaFold predictions (TM-score=0.73) are beMer than 
AlphaFold2 predictions (TM-score=0.60), with a P-value of 0.0238.

https://www.biorxiv.org/content/10.1101/2022.07.21.500999v1
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OmegaFold Results - Contribution of Geoformer

(A) OmegaPLM model is pretrained by per-residue mask loss, per-motif mask loss and subsequence mask loss on unaligned protein 
sequences. (B) Geoformer layers iteratively smooth node and pairwise embeddings and reduce geometric inconsistency among 
them. Initially, node and pairwise embeddings generated by OmegaPLM reside in a latent space with geometric inconsistency (red). 
In each Geoformer layer, these embeddings are updated iteratively to refine the geometric inconsistency: each node embedding was 
updated with related pairwise embeddings, and each pairwise embedding was updated by triangular consistency of pairwise 
embeddings. (C) Geoformer layers improve geometry of contact predictions. Inconsistency is defined as the percentage of predicted 
distance triples {ij, jk, ik} that violate the triangular inequality. (D) Visualization of contact maps.

https://www.biorxiv.org/content/10.1101/2022.07.21.500999v1
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OmegaPLM vs. Other pLMs 

https://www.biorxiv.org/content/10.1101/2022.07.21.500999v1

This figure is in log scale both in time and in space. Each model in the plot has four points, where each one grows from 128 to 
1024 exponentially in sequence length while decrease from 64 to 8 in batch size simultaneously. Points of all models in this 
plot go from boHom left to top right. ProtT5 cannot fit on our testing GPU (Nvidia A100 80GB) with the same data size during 
training. Value as mean from best 64 rounds of 128 rounds in total.
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OmegaFold Results - Contribution of Recycling

https://www.biorxiv.org/content/10.1101/2022.07.21.500999v1

Performance of structure prediction with recycling. OmegaFold reaches reasonable performance without recycling, and 
achieves highest performance after around 10 recycles.
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https://www.science.org/doi/10.1126/science.ade2574
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Masked Language Modeling: ESM-2

https://www.science.org/doi/10.1126/science.ade2574

ESM-2 is trained to predict the identity of amino acids that have been randomly masked out of protein 
sequences: 

where for a randomly generated mask M that includes 15% of positions i in the sequence x, the model is tasked 
with predicting the identity of the amino acids xi in the mask from the surrounding context x\M excluding the 
masked positions.  

This masked language modeling objective causes the model to learn dependencies between the amino acids. 
Although the training objective itself is simple and unsupervised, solving it over millions of evolutionarily 
diverse protein sequences requires the model to internalize sequence paMerns across evolution. 

During training, sequences are sampled with even weighting across ∼43 million UniRef training clusters from 
∼138 million UniRef90 sequences, so that over the course of training, the model sees ∼65 million unique 
sequences.
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ESM-2 Training

https://www.science.org/doi/10.1126/science.ade2574

ESM-2 model parameters at different scales. They trained each model over 512 NVIDIA V100 GPUs. ESM2 
650M took 8 days to train. The 3B parameter LM took 30 days. The 15B model took 60 days. All language 
models were trained for 500K updates, except the 15B language model which they stopped after 270K 
updates due to computational constraints.
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ESMFold Architecture

https://www.science.org/doi/10.1126/science.ade2574

The sequence is processed through the feedforward layers of the language model, and the model’s internal 
states (representations) are passed to the folding head.  

The head begins with a series of folding blocks. Each folding block alternates between updating a sequence 
representation and a pairwise representation. This is similar to Evoformer, but simplified.  

The output of these blocks is passed to an equivariant transformer structure module, and three steps of 
recycling are performed before outpuMing a final atomic-level structure and predicted confidence.  This is 
similar to IPA. 

This architecture represents a major simplification in comparison with current state-of-the-art structure 
prediction models, which deeply integrate the MSA into the neural network architecture through an 
aMention mechanism that operates across the rows and columns of the MSA.
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ESMFold Architecture

https://www.science.org/doi/10.1126/science.ade2574

The major change that needs to be made to adapt the Evoformer block to language model features is to remove 
its dependence on MSAs. Since MSAs are two dimensional, the Evoformer employs axial aMention over the 
columns and rows of the MSA. The language model features are one dimensional, so we can replace the axial 
aMention with a standard aMention over this feature space. The self-aMention uses a bias derived from the 
pairwise representations. The sequence representation communicates with pairwise representation via both an 
outer product and outer difference. Other operations in the Evoformer block are kept the same. We call this 
simplified architecture the Folding block. 

ESMFold has 48 folding blocks. It was trained using the Frame Aligned Point Error (FAPE) and distogram losses 
introduced in AlphaFold2, as well as heads for predicting LDDT and the pTM score. We omit the masked 
language modeling loss. For training, AlphaFold2, distance errors in the FAPE loss were clamped to a maximum 
of 10 angstroms for 90% of batches. They instead calculate both clamped and unclamped losses and take the sum, 
with weights of 0.9 and 0.1 respectively. Language model parameters are frozen for training ESMFold. They use 
the 3B parameter ESM-2 language model, the largest model that permits inference on a single GPU.
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ESMFold Results

(B) ESMFold produces accurate atomic resolution predictions, with similar accuracy to RoseTTAFold on CAMEO. When MSAs are ablated for 
AlphaFold and RoseTTAFold, performance of the models degrades. ScaDerplots compare ESMFold (x axis) predictions with AlphaFold2 (y axis), 
colored by language model perplexity. Proteins with low perplexity score similarly to AlphaFold2. AF, AlphaFold2. (C) Model pLDDT versus true 
LDDT (left) and relative performance against AlphaFold (right) on CAMEO. pLDDT is a well-calibrated estimate of prediction accuracy. (D) 
Successful examples (E) Unsuccessful example. The perplexity of the unsuccessful sequence is 16.6, meaning the language model does not 
understand the input sequence. Perplexity ranges from 1 for a perfect model to 20 for a model that makes predictions at random.

https://www.science.org/doi/10.1126/science.ade2574
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ESMFold — Evolutionary-scale mapping of metagenomics

(A) ESMFold calibration with AlphaFold2 for metagenomic sequences. Distribution is shown as a density estimate across a subsample of ∼4000 
sequences from the MGnify database. (B) Distribution of mean pLDDT values computed for each of ∼617 million ESMFold-predicted structures 
from the MGnify database. (C) The distribution of the TM-score to the most similar PDB structure for each of 1 million randomly sampled high-
confidence (mean pLDDT > 0.7 and pTM > 0.7) structures. (D) Sample of 1 million high-confidence protein structures is visualized in two 
dimensions by using the UMAP algorithm and colored according to distance from the nearest PDB structure, in which regions with low similarity to 
known structures are colored in dark blue.(E) Additional UMAP plot in which the 1 million sequences are ploDed according to the same coordinates 
as in (D) but colored by the sequence identity to the most similar entry in UniRef90 according to a blastp search.

https://www.science.org/doi/10.1126/science.ade2574
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ESMFold — Evolutionary-scale mapping of metagenomics

(A) Example predicted structures from six different metagenomic sequences. Left of each subfigure: The prediction is displayed with the 
AlphaFold2 prediction (light green). Right of each subfigure: The prediction is displayed with the Foldseek-determined nearest PDB structure 
according to TM-score. (B and C) Examples of two ESMFold-predicted structures that have good agreement with experimental structures in the 
PDB but that have low sequence identity to any sequence in UniRef90. (B) Predicted structure of MGYP000936678158 aligns to an experimental 
structure from a bacterial nuclease (light brown, PDB: 3H4R), whereas (C) the predicted structure of MGYP004000959047 aligns to an experimental 
structure from a bacterial sterol binding domain (light brown, PDB: 6BYM).

https://www.science.org/doi/10.1126/science.ade2574


