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The Rise of Pre-trained Protein Language Model

AlphaFold2 needs as input evolutionary data in the form of multiple sequence alignments (MSAs).

However, MSAs of homologous proteins are not always available, such as with orphan proteins or fast-
evolving proteins like antibodies

A protein typically folds in a natural setting from its primary amino acid sequence into its three-dimensional

structure, suggesting that evolutionary information and MSAs should not be necessary to predict a protein’s
folded form.

How to accurately predict the protein 3D structures solely based on the protein sequences without relying on
the MSA information?

Constructing a general pre-trained protein language model (PLM) suitable for various protein tasks.

https://www.biorxiv.org/content/10.1101/2022.07.21.500999v 1
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OmegaPLM

It was hypothesized that akin to extracting grammatical structure from large collections of natural language
corpuses, predicting protein structure from protein sequence databases should be possible without having to
rely on aligned MSAs.

It was reasoned that the transformer’s attention mechanism used to model long-range relationships in natural
language sequences should also be applicable to extracting correlations from evolutionary relationships
present in protein sequences

In contrast to natural languages, proteins are more than merely strings; they are physical chains of amino acids
that fold into three-dimensional structures. Thus, to model 3D protein structures, we were motivated to
incorporate geometric intuition into the transformer architecture design.

https://www.biorxiv.org/content/10.1101/2022.07.21.500999v 1
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The OmegaFold System
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https://www.biorxiv.org/content/10.1101/2022.07.21.500999v 1
Model architecture of OmegaFold. The primary protein sequence is first fed into a pretrained protein

language model (OmegaPLM) to obtain residue-level node embeddings and residue-residue
pairwise embeddings. A stack of Geoformer layers then iteratively updates these embeddings to
improve their geometric consistency. Lastly, a structure module predicts the 3D protein structures
from the final embeddings. The predicted structure and the embeddings could be fed again as input
into another cycle through a recycling procedure to predict a more refined structure.



OmegalPLM Architecture
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def OmegaPLM ( {n;}, dp =256, d =1,280, Nyuer =66, d, =2,560) :

for/ € [1,..., Ny do
r; = LayerNorm(n;)

U;,V;,g; = SiL.U (Linear (’T’?j))
{gi} = ROPE({w, © u; + b, })

{k;} = ROPE({wr ® u; + by})
(v;; = softmax; (l%%—f (quka) ™ b'i—j)

O;, = (g; ® Zj Xi;U;
nN; += Linear(oi)

end

11 return {n;}

https://www.biorxiv.org/content/10.1101/2022.07.21.500999v 1

Instead of using multi-headed self-attention (MHSA), adopt the Gated Attention Unit (GAU).

We apply the gate operation after the attention aggregation and replace the conventional softmax(-)

function with relus(-) to aggregate the pairwise logits. Use an extra gating vector g; € R%

where d, is the dimensionality of the value vector.

© Debswapna Bhattacharya Al-powered Molecular Modeling | Virginia Tech 6



OmegalPLM Objective

BERT loss. For each sequence, 15% tokens are selected as targets to be predicted, 80% of which are replaced
with a [mask] token, 10% of which are replaced with a random amino acid, and the final 10% stay what they
are.

SpanBERT-like loss. We sample the span length from Poisson distribution with A =7 and clip the sampled
value at 5 and 8 and then mask the tokens consecutively according to the span length. Unlike SpanBERT, we
still use the output embeddings from the corresponding tokens to perform prediction rather than the boundary
tokens of the spans.

Sequential masking, where we mask either the first half or the second half of the sequence, akin to Prefix
Language Modeling

Moreover, they assign different weights for these loss terms. The weights for the first two loss functions are
0.45 and the last one is 0.1.

Focal loss, they observe that many of the amino acids can be accurately predicted with its short-range sequence
context. This creates an easy prediction task for the model to learn and causes the model to overly focus on
short-range relations. To address this problem, we adopt the focal loss to down-weight the easy targets and

make the model focus more on capturing the long range relationships among different amino acids.
https://www.biorxiv.org/content/10.1101/2022.07.21.500999v1
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OmegaPLM Hyperparameters

Table S2: OmegaPI.M Configurations.

No. Layers 66
d 1280
dy 256
d, 2560
No. Attention Head 1
Tying Embeddings for input & prediction head True
Cosine normalization with learned scale (28, 36) at output True
Clipping thresholds of relative positional bias [-64, 64]
Normalization type LayerNorm (37)
Pre- or Post-Norm Pre-Norm
Learnable parameters in normalization False

https://www.biorxiv.org/content/10.1101/2022.07.21.500999v 1

OmegaPLM is implemented in PyTorch and trained for 2,560 GPU Nvidia A100 80G days. In the
hardware setup, we find the training process is accelerated by incorporating the PowerSGD gradient
compression with rank 32 to reduce the communication loads across different GPUs. Empirically we
find PowerSGD improve 30% of the training speed. Though this compression introduces noise into
the gradients, we find such noise inconsequential compared to the speed gain in convergence.

© Debswapna Bhattacharya Al-powered Molecular Modeling | Virginia Tech 8



Geoformer Arch1tecture

1 def Geoformer ( Agan), {1}, {wi;}, N1 = 50, N2 = 8,d,, = 256,d,, = 128)

B forl€ [1; ., N1 do For each node, Geoformer first aggregates the information
3 {n;} += NodeAttention({n,-, FoA{wi; ) from all the other nodes to generate a basic node
4 {n;} += NodeTransition({n;}) representation ((NodeAttention and NodeTransition ). They
5 {wij} += Node2Edge({n;})) update the node embedding {ni} based on two factors: 1)
6 for i € [1,2] do the attention between node i and any other node j and 2)
7 | {w;;} += EdgeAttention({w;,}) the edge fembec'i.dmg {wij) capturing the interactions
5 and betw}?en iand j 1r11 admore direct way. No;ﬁlelzZ]idge j)mdl;ce
i 5 another temporal edge representation solely based on the
? {w;; } += EdgeTransition({w; })) node repreSSntation ;gnferfed from the prev?ous step.
L end Similar to NodeAttention, they also update edge
11 for/ € [1,...,N;] do representations {wij} based on all the other edges using a
12 {n;}, {7,} += StructureModule({n; }, {w;; }) transformer-based model EdgeAttention, which is also the
13 {w;;} += 3Dprojection(Aaq(:), {Zi}) function we rely on to achieve geometric consistency in the
14 {wij} 4= EdgeAtten[ion({wij}) high dimensional space.
15 end They repeat this process 50 times to generate both node
16 return {n;}, {w; i} and edge representations for each residue and residue pair.

https://www.biorxiv.org/content/10.1101/2022.07.21.500999v 1
In the last 8 layers of Geoformer, they first translate the inferred node and edge representation of a protein to a temporal 3D

structure by using the StructureModule function implemented by AlphaFold2. xi is the coordinates for the atoms in amino
acid i. They then translate the temporal 3D structure back to the high dimensional space by using the 3Dprojection function
whose outputs have the same dimensionality as the wi. In this way, the updated edge representation contains the
information indirectly encoded from the 3D space. Another EdgeAttention function is applied to achieve geometric
consistency for the newly updated wi. Eventually, both node representation n: and edge representation wi from the last
layer are used to predict the 3D coordinates and connected to the loss functions.

© Debswapna Bhattacharya Al-powered Molecular Modeling | Virginia Tech 9



Geoformer Node and Edge Updates

The NodeAttention function provides expressive node representations by integrating all the node and edge representations
using the self-attention layers.

gi, k;,v; = Linear (nz@_l))

b;; = Linear(w;;)

1
%qiTkj + bz‘j)

o; = sigmoid(Linear(n‘™')) ® Z Qi
J

a;; = softmax; (

n’ = Linear (0;)

EdgeAttention achieves geometric consistency by simultaneously considering all the other edge embeddings wij The edge
embedding wi is updated based on various types of interactions involving a third node t. Note that AlphaFold2 uses four
triangular multiplicative operations

a;j, Bij = sigmoid (Linear(w;;)) ® Linear(w;;)
Qij, kij, ’Uij, bij = Linear('wz-j)
gi; = sigmoid(Linear(w;;))
Ve
0ij = gi; © (Z it (Vit + Vi + Gy © Btj))
k

1
a;i; = softmax; (—qg(kn + ki) + by + btj)

w;; = Linear (o0;;)
https://www.biorxiv.org/content/10.1101/2022.07.21.500999v 1
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OmegaFold Results - Benchmark
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https://www.biorxiv.org/content/10.1101/2022.07.21.500999v 1

(B) Evaluations on recent CAMEQO an CASP targets. Our predictions (blue) for 7DKI:A, 7EBQ:A, 7ED6:A from CAMEO and T1005,
T1056 from CASP are highly accurate according to the experimental structures (green). Figures on the right show held-out test
results on 146 CAMEO targets and 29 challenging CASP targets. OmegaFold significantly outperforms AlphaFold2 and
RoseTTAFold when only single sequences are provided as input on both standard CAMEQO Local Distance Difference Tests (LDDTs)
and CASP TM-scores; OmegaFold performs comparably to AlphaFold2 and RoseTTAFold on the CASP and CAMEO test cases
when the standard MSAs are used as input. (C) Runtime analysis. OmegaFold is significantly faster than AlphaFold2 (ColabFold
version) on single-chain proteins with typical lengths of around 250, 500 and 1000 residues. ColabFold was used to further decrease
the runtimes of the MSA search time (pink) and model inference time (red).
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OmegaFold Results - Antibody and Orphan Proteins
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https://www.biorxiv.org/content/10.1101/2022.07.21.500999v 1

(A) Antibody CDRH3 regions. The scatter plot depicts the comparison on 33 recently released nanobody and antibody proteins with
highresolution experimental structures. Overall, OmegaFold predictions (RMSD=2.12A) are significantly better than AlphaFold2
predictions (RMSD=2.98 A), with a P-value of 0.0017.(B) Orphan proteins. The scatter plot shows comparisons on 19 recently
released orphan proteins with no homologous sequences identified. Overall, OmegaFold predictions (TM-score=0.73) are better than

AlphaFold2 predictions (TM-score=0.60), with a P-value of 0.0238.
Al-powered Molecular Modeling | Virginia Tech 12
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OmegaFold Results - Contribution of Geoformer
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https://www.biorxiv.org/content/10.1101/2022.07.21.500999v 1

(A) OmegaPLM model is pretrained by per-residue mask loss, per-motif mask loss and subsequence mask loss on unaligned protein
sequences. (B) Geoformer layers iteratively smooth node and pairwise embeddings and reduce geometric inconsistency among
them. Initially, node and pairwise embeddings generated by OmegaPLM reside in a latent space with geometric inconsistency (red).
In each Geoformer layer, these embeddings are updated iteratively to refine the geometric inconsistency: each node embedding was
updated with related pairwise embeddings, and each pairwise embedding was updated by triangular consistency of pairwise
embeddings. (C) Geoformer layers improve geometry of contact predictions. Inconsistency is defined as the percentage of predicted
distance triples {jj, jk, ik} that violate the triangular inequality. (D) Visualization of contact maps.
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OmegaPLM vs. Other pLMs

Supervised Contact Prediction

Model Parameter Count
Top-L.  Top-L/2  Top-L/5
OmegaPLM 670M 0.587 0.7351 0.8412
ESM-1b 650M 0.5666 0.7032 0.8051
ProtBert 420M 0.3287 0.4198 0.5234
ProtT5 11B 0.5728 0.7224 0.8316
—e— OmegaPLM —e— ESM-1b . ProtBert —e— protT5xxl https://www.biorxiv.org/content/10.1101/2022.07.21.500999v 1
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This figure is in log scale both in time and in space. Each model in the plot has four points, where each one grows from 128 to
1024 exponentially in sequence length while decrease from 64 to 8 in batch size simultaneously. Points of all models in this
plot go from bottom left to top right. ProtT5 cannot fit on our testing GPU (Nvidia A100 80GB) with the same data size during
training. Value as mean from best 64 rounds of 128 rounds in total.
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OmegaFold Results - Contribution of Recycling

0.84
e o—./o\._..-o-—-“o—O\./.’.\.——o—o
o
= 0.80 - i
[a)
-
0.78 - /
@
0.76
0 2 4 6 8 10 12 14 16
Number of recycles
(a) LDDT
0.88 A
0.86 1 ——
- ./o_._-—-o—o/ o, DT o e
o
? 0.84 g
= |/
0.82 4
https://www.biorxiv.org/content/10.1101/2022.07.21.500999v 1
0.80 A
0 2 4 6 8 10 12 14 16

Number of recycles

(b) TM-score

Performance of structure prediction with recycling. OmegaFold reaches reasonable performance without recycling, and
achieves highest performance after around 10 recycles.
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Speedy structures from single sequences
Machine learning methods for protein structure prediction have taken advantage o
of the evolutionary information present in multiple sequence alignments to derive o,
accurate structural information, but predicting structure accurately from a single
sequence is much more difficult. Lin et al. trained transformer protein language ©
models with up to 15 billion parameters on experimental and high-quality pre- @
dicted structures and found that information about atomic-level structure »
emerged in the model as it was scaled up. They created ESMFold, a sequence-to-
structure predictor that is nearly as accurate as alignment-based methods and con-
siderably faster. The increased speed permitted the generation of a database, the <

ESM Metagenomic Atlas, containing more than 600 million metagenomic proteins.
—MAF

Https:”www.science.org/doi/ 10.1126/science.ade2574
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Masked Language Modeling: ESM-2

ESM-2 is trained to predict the identity of amino acids that have been randomly masked out of protein

LM = — E _d‘/jlogp(azz-!az\]\,j)

sequences:

where for a randomly generated mask M that includes 15% of positions i in the sequence x, the model is tasked
with predicting the identity of the amino acids x; in the mask from the surrounding context x\m excluding the
masked positions.

This masked language modeling objective causes the model to learn dependencies between the amino acids.
Although the training objective itself is simple and unsupervised, solving it over millions of evolutionarily
diverse protein sequences requires the model to internalize sequence patterns across evolution.

During training, sequences are sampled with even weighting across ~43 million UniRef training clusters from
~138 million UniRef90 sequences, so that over the course of training, the model sees ~65 million unique
sequences.

© Debswapna Bhattacharya Al-powered Molecular Modeling | VirginidR&yww.science.org/doi/10.1126/science.ade2574



ESM-2 Training

SM 3ISM 150M 650M 3B 15B
Dataset URS0/D URS0/D URS0/D  URS0/D URS0/D URS0/D
Number of 6 12 30 33 36 48
layers
Embedding dim| 320 480 640 1280 2560 5120
Attention heads 20 20 20 20 40 40
Training steps | 500K 500K 500K 500K 500K 270K
Learning rate 4e-4 4e-4 4e-4 4e-4 4e-4 1.6¢-4
Weight decay 0.01 0.01 0.01 0.01 0.01 0.1
Clip norm 0 0 0 0 1.0 1.0
Distributed DDP DDP DDP DDP FSDP FSDP
backend

ESM-2 model parameters at different scales. They trained each model over 512 NVIDIA V100 GPUs. ESM2
650M took 8 days to train. The 3B parameter LM took 30 days. The 15B model took 60 days. All language
models were trained for 500K updates, except the 15B language model which they stopped after 270K
updates due to computational constraints.
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ESMFold Architecture
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Single Sequence
The sequence is processed through the feedforward layers of uie 1anguage mouel, ana uie mouer s uierndl
states (representations) are passed to the folding head.

The head begins with a series of folding blocks. Each folding block alternates between updating a sequence
representation and a pairwise representation. This is similar to Evoformer, but simplified.

The output of these blocks is passed to an equivariant transformer structure module, and three steps of
recycling are performed before outputting a final atomic-level structure and predicted confidence. This is
similar to IPA.

This architecture represents a major simplification in comparison with current state-of-the-art structure
prediction models, which deeply integrate the MSA into the neural network architecture through an
attention mechanism that operates across the rows and columns of the MSA.
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ESMFold Architecture
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The major change that needs to be made to adapt the Evoformer block to language model teatures is to remove
its dependence on MSAs. Since MSAs are two dimensional, the Evoformer employs axial attention over the
columns and rows of the MSA. The language model features are one dimensional, so we can replace the axial
attention with a standard attention over this feature space. The self-attention uses a bias derived from the
pairwise representations. The sequence representation communicates with pairwise representation via both an
outer product and outer difference. Other operations in the Evoformer block are kept the same. We call this
simplified architecture the Folding block.

ESMFold has 48 folding blocks. It was trained using the Frame Aligned Point Error (FAPE) and distogram losses
introduced in AlphaFold2, as well as heads for predicting LDDT and the pTM score. We omit the masked
language modeling loss. For training, AlphaFold2, distance errors in the FAPE loss were clamped to a maximum
of 10 angstroms for 90% of batches. They instead calculate both clamped and unclamped losses and take the sum,
with weights of 0.9 and 0.1 respectively. Language model parameters are frozen for training ESMFold. They use
the 3B parameter ESM-2 language model, the largest model that permits inference on a single GPU.

https://www.science.org/doi/10.1126/science.ade2574
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https://www.science.org/doi/10.1126/science.ade2574

(B) ESMFold produces accurate atomic resolution predictions, with similar accuracy to RoseTTAFold on CAMEO. When MSAs are ablated for
AlphaFold and RoseTTAFold, performance of the models degrades. Scatterplots compare ESMFold (x axis) predictions with AlphaFold2 (y axis),
colored by language model perplexity. Proteins with low perplexity score similarly to AlphaFold2. AF, AlphaFold2. (C) Model pLDDT versus true
LDDT (left) and relative performance against AlphaFold (right) on CAMEO. pLDDT is a well-calibrated estimate of prediction accuracy. (D)
Successtul examples (E) Unsuccessful example. The perplexity of the unsuccessful sequence is 16.6, meaning the language model does not
understand the input sequence. Perplexity ranges from 1 for a perfect model to 20 for a model that makes predictions at random.
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ESMFold — Evolutionary-scale mapping of metagenomics
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(A) ESMFold calibration with AlphaFold2 for metagenomic sequences. Distribution is shown as a density estimate across a subsample of ~4000
sequences from the MGnity database. (B) Distribution of mean pLDDT values computed for each of ~617 million ESMFold-predicted structures
from the MGnify database. (C) The distribution of the TM-score to the most similar PDB structure for each of 1 million randomly sampled high-
confidence (mean pLDDT > 0.7 and pTM > 0.7) structures. (D) Sample of 1 million high-confidence protein structures is visualized in two
dimensions by using the UMAP algorithm and colored according to distance from the nearest PDB structure, in which regions with low similarity to
known structures are colored in dark blue.(E) Additional UMAP plot in which the 1 million sequences are plotted according to the same coordinates

as in (D) but colored by the sequence identity to the most similar entry in UniRef90 according to a blastp search.
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ESMFold — Evolutionary-scale mapping of metagenomics
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https://www.science.org/doi/10.1126/science.ade2574

(A) Example predicted structures from six different metagenomic sequences. Left of each subfigure: The prediction is displayed with the
AlphaFold2 prediction (light green). Right of each subfigure: The prediction is displayed with the Foldseek-determined nearest PDB structure
according to TM-score. (B and C) Examples of two ESMFold-predicted structures that have good agreement with experimental structures in the
PDB but that have low sequence identity to any sequence in UniRef90. (B) Predicted structure of MGYP000936678158 aligns to an experimental
structure from a bacterial nuclease (light brown, PDB: 3H4R), whereas (C) the predicted structure of MGYP004000959047 aligns to an experimental
structure from a bacterial sterol binding domain (light brown, PDB: 6BYM).
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