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The AlphaFold 2 Era

https://www.nature.com/articles/s41586-021-03819-2

∘ Can AF2-like architectures generalize for other bimolecular modeling, 
such as RNA?
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Hierarchical Conformations in RNA

https://journals.plos.org/ploscompbiol/article/figures?id=10.1371/journal.pcbi.1009291
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RNA Conformational Pa<erns

https://www.nature.com/articles/s41467-023-42528-4
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trRose<aRNA

https://www.nature.com/articles/s41467-023-42528-4
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The trRose<aRNA System

https://www.nature.com/articles/s41467-023-42528-4

For a given query RNA, the first step of trRose<aRNA is to prepare an MSA and a secondary structure. 

MSA is generated by using the program rMSA against multiple sequence databases (NCBI’s nt, Rfam, and 
RNAcentral). The secondary structure is predicted by SPOT-RNA from the query sequence. Here we use the 
predicted probability matrix as the input, which contains more information than the dot-bracket 
representation. 

The second step of trRose<aRNA is to predict the 1D and 2D geometries by deep learning.  

Similar to trRose<a, trRose<aRNA generates full-atom structure models by energy minimization with deep 
learning potentials and physics-based energy terms in Rose<a.
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trRose<aRNA - RNAformer

https://www.nature.com/articles/s41467-023-42528-4

1. MSA to MSA. To update the MSA representation by itself, we perform row- and column-wise gated self-
a<ention operations and combine the corresponding results.  

2. MSA to pair. We perform an outer product operation on the self-updated MSA representation to transform 
it into the pair format. 

3. Pair to pair. After the above step, they perform the triangle updates, followed by a feed-forward layer. For 
each triangle update layer, use a Res2Net to enhance the ability to model the local details. 

4. Pair to MSA. The updated pair representation is then linearly projected to the pair-wise a<ention maps, 
which are then multiplied on the MSA representation, followed by a feed-forward layer.
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trRose<aRNA - Structure Generation

https://www.nature.com/articles/s41467-023-42528-4

where Edist, Eori, and Econt represent the distance-, orientation-, contact-based restraints and Rose<a’s internal 
energy terms, respectively; Eori,2D and Eori,1D represent the restraints from 2D and 1D orientations, respectively; 
L is the length of the sequence. The weights (w1 = 1.03, w2 = 1.0, w3 = 1.05, w4 = 0.05) are decided on hundreds of 
RNAs randomly selected from the training set to minimize the average RMSD.  

The folding procedure is implemented with pyRose<a. From each RNA, 20 full-atom starting structures are 
first generated using the RNA_HelixAssembler protocol in pyRose<a. L-BFGS is then applied to refine these 
structures by minimizing the total energy, resulting in 20 refined full-atom structure models.  

Finally, the model with the lowest total energy is selected as the final prediction.
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trRose<aRNA - Training

https://www.nature.com/articles/s41467-023-42528-4

All the RNA chains released before 2022-01 in PDB are used as training. In total, they obtained 8849 samples. 
Then they tried to generate MSA for each query sequence and removed the sequences without sequence 
homologs. Finally, 3633 RNA chains were retained for training the network models of trRose<aRNA. 

Self-distillation training set from bpRNA database with experimental secondary structures, consisting of 
13,202 RNA chains. 

In the first step, they trained an un-distilled model using the PDB set by 15 epochs. This model was then used 
to generate the labels for RNAs in the self-distillation set. In the second step, the un-distilled model was further 
trained on the combination of the PDB set and the self-distillation set with another 15 epochs. In the third step, 
they fine-tuned the models on the long sequences (>100 nucleotides) selected from the PDB set.  

They used the Adam optimizer to minimize the loss function (see below) with different learning rates (0.0001 
for the first two steps, 0.00005 for the third step). 

For all training steps, the loss function is defined as the cross entropy between the predicted distributions and 
the real or generated labels. In total, the loss function can be wri<en as: 

where L2D, L1D, and Lcont are the loss for the 2D distances and orientations, 1D orientations, and 2D contacts.
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trRose'aRNA - CASP15 Results

https://www.nature.com/articles/s41467-023-42528-4
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trRose'aRNA - CASP15 Results

https://www.nature.com/articles/s41467-023-42528-4
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trRose'aRNA - CASP15 Results

https://www.nature.com/articles/s41467-023-42528-4
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trRose<aRNA vs. Automated Non-DL methods

https://www.nature.com/articles/s41467-023-42528-4
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trRose<aRNA vs. Automated Non-DL methods

https://www.nature.com/articles/s41467-023-42528-4
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DRfold

https://www.nature.com/articles/s41467-023-41303-9
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The DRfold System

https://www.nature.com/articles/s41467-023-41303-9

A DRfold pipeline for sequence-
based RNA structure prediction.  

B–E Details of embedding layer, 
RNA transformer block, and 
structural and geometry modules, 
respectively.  

F Reduced representation of 
nucleotide residues by a 3-bead 
model (C4’, P, glycosidic N) in 
DRfold. G Illustration of the frame 
aligned point error (FAPE).  

H Prediction terms of inter-
nucleotide geometry.
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DRfold - Training

https://www.nature.com/articles/s41467-023-41303-9

For training the end-to-end models, two types of loss functions, including the FAPE loss and the inter-N atom 
distance loss, are used, i.e., 

The FAPE loss is adapted from AF2. The distance loss function takes the cross-entropy form. 

For the geometry model, the Euclidean distance between the P, C4’, and glycosidic N atoms are calculated, 
where the distance values for the inter-P atoms, inter-C4’ atoms, and inter-N atoms are discretized into 56, 44, 
and 32 bins in the ranges of [2, 30 Å], [2, 24 Å], and [2, 18 Å]. The dihedral angle values are discretized into 36 
bins. The loss function of the geometry models is the cross-entropy loss of the distance and dihedral angle 
terms. 

Adam optimizer was used with an initial learning rate of 1e−3 for 100 epochs. The whole end-to-end model 
was trained on a single Nvidia A40 GPU with 32GB of memory, where 6 end-to-end models and 3 geometry 
models with different random parameter initializations were trained, and training each of them took 2 weeks. 
For the 3 geometry models, it took around 50 epochs of training for 5 days each.
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DRfold - Inference

https://www.nature.com/articles/s41467-023-41303-9

Following the end-to-end and geometry modeling, a combination of two deep-learning energy terms is used to 
guide the next step of RNA structure optimization as follows: 

6 models predicted by 6 independent end-to-end models are predicted also used as initial structures for the 
optimization system to run L-BFGS algorithm to iteratively update the parameters of the system which 
determines the 3D conformations of the RNA models. The conformation with the lowest energy is considered 
as the final predicted structure among the 6 different L-BFGS trajectories. 

During the first step, they use Arena to construct the standard conformations of the full-atomic structure. 

Finally, a full-atom MD minimization is performed using OpenMM to further refine the local structure 
geometry, including steric clash and bond-length/angle violation removal.
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DRfold - Results

https://www.nature.com/articles/s41467-023-41303-9

A Distribution of RMSD (Å) of the predicted models to the target structure. The central mark indicates the 
median. B Fraction of the test RNAs achieving successful structure prediction at different RMSD cut-offs. C 
TM-score distribution of different methods. The central mark indicates the median. D The average TM-score 
by different methods versus the sequence identity cut-off between the test and DRfold training datasets.
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DRfold - Results

https://www.nature.com/articles/s41467-023-41303-9

Head-to-head comparisons between DRfold and the control methods on the 40 test RNA structures.
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DRfold - Results

https://www.nature.com/articles/s41467-023-41303-9

end-to-end models improve performance
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DRfold - Results

https://www.nature.com/articles/s41467-023-41303-9

Secondary structure feature improves performance
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Discussions
Protein Structure Prediction via AF2 

1. 

2. 

3. 

4. 

RNA Structure Prediction in the post-AF2 Era 

1. 

2. 

3. 

4.


