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- Can AF2-like architectures generalize for other bimolecular modeling,
such as RNA?
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Hierarchical Conformations in RNA

S'-end 3'-end

3'-end
RNA RNA RNA
sequence secondary structure tertiary structure

https://journals.plos.org/ploscompbiol/article/figures?id=10.1371/journal.pcbi.1009291
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RNA Conformational Patterns

multi-branch loop
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trRosettaRN A

nature communications A

Article https://doi.org/10.1038/s41467-023-42528-4

trRosettaRNA: automated prediction of RNA
3D structure with transformer network

Received: 8 June 2023 Wenkai Wang ®'°, Chenjie Feng?>, Renmin Han?®, Ziyi Wang?, Lisha Ye',
Zongyang Du', Hong Wei', Fa Zhang®*' , Zhenling Peng®?' &
Jianyi Yang ©®?

Accepted: 13 October 2023

Published online: 09 November 2023

/™ Check for updates RNA 3D structure prediction is a long-standing challenge. Inspired by the
recent breakthrough in protein structure prediction, we developed trRo-
settaRNA, an automated deep learning-based approach to RNA 3D structure
prediction. The trRosettaRNA pipeline comprises two major steps: 1D and 2D
geometries prediction by a transformer network; and 3D structure folding by
energy minimization. Benchmark tests suggest that trRosettaRNA outper-
forms traditional automated methods. In the blind tests of the 15" Critical
Assessment of Structure Prediction (CASP15) and the RNA-Puzzles experi-
ments, the automated trRosettaRNA predictions for the natural RNAs are
competitive with the top human predictions. trRosettaRNA also outperforms
other deep learning-based methods in CASP15 when measured by the Z-score
of the Root-Mean-Square Deviation. Nevertheless, it remains challenging to
predict accurate structures for synthetic RNAs with an automated approach.
We hope this work could be a good start toward solving the hard problem of
RNA structure prediction with deep learning.

e —
https://www.nature.com/articles/s41467-023-42528-4
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The trRosettaRNA System
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For a given query RNA, the first step of trRosettaRINA is to prepare an MSA and a secondary structure.

MSA is generated by using the program rMSA against multiple sequence databases (NCBI’'s nt, Rfam, and
RNAcentral). The secondary structure is predicted by SPOT-RNA from the query sequence. Here we use the
predicted probability matrix as the input, which contains more information than the dot-bracket

representation.

The second step of trRosettaRNA is to predict the 1D and 2D geometries by deep learning.

Similar to trRosetta, trRosettaRNA generates full-atom structure models by energy minimization with deep

learning potentials and physics-based energy terms in Rosetta.

© Debswapna Bhattacharya
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trRosettaRNA - RNAformer
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1. MSA to MSA. To update the MSA representation by itself, we perform row- and column-wise gated self-
attention operations and combine the corresponding results.

2. MSA to pair. We perform an outer product operation on the self-updated MSA representation to transform
it into the pair format.

3. Pair to pair. After the above step, they perform the triangle updates, followed by a feed-forward layer. For
each triangle update layer, use a Res2Net to enhance the ability to model the local details.

4. Pair to MSA. The updated pair representation is then linearly projected to the pair-wise attention maps,
which are then multiplied on the MSA representation, followed by a feed-forward layer.

https://www.nature.com/articles/s41467-023-42528-4
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trRosettaRNA - Structure Generation

E = un Edigt + (205 Eori + w3Econt + w4ET‘OS

Eori — Lori,2D + 5 ort,1D

where Edist, Eori, and Econt represent the distance-, orientation-, contact-based restraints and Rosetta’s internal
energy terms, respectively; Eori2D and Eori,1D represent the restraints from 2D and 1D orientations, respectively;
L is the length of the sequence. The weights (w1 =1.03, w2=1.0, w3=1.05, w4 =0.05) are decided on hundreds of
RNAs randomly selected from the training set to minimize the average RMSD.

The folding procedure is implemented with pyRosetta. From each RNA, 20 full-atom starting structures are
first generated using the RNA_HelixAssembler protocol in pyRosetta. L-BFGS is then applied to refine these
structures by minimizing the total energy, resulting in 20 refined full-atom structure models.

Finally, the model with the lowest total energy is selected as the final prediction.

https://www.nature.com/articles/s41467-023-42528-4
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trRosettaRNA - Training

All the RNA chains released before 2022-01 in PDB are used as training. In total, they obtained 8849 samples.
Then they tried to generate MSA for each query sequence and removed the sequences without sequence
homologs. Finally, 3633 RNA chains were retained for training the network models of trRosettaRNA.

Self-distillation training set from bpRNA database with experimental secondary structures, consisting of
13,202 RNA chains.

In the first step, they trained an un-distilled model using the PDB set by 15 epochs. This model was then used
to generate the labels for RN As in the self-distillation set. In the second step, the un-distilled model was further
trained on the combination of the PDB set and the self-distillation set with another 15 epochs. In the third step,
they fine-tuned the models on the long sequences (>100 nucleotides) selected from the PDB set.

They used the Adam optimizer to minimize the loss function (see below) with different learning rates (0.0001
for the first two steps, 0.00005 for the third step).

For all training steps, the loss function is defined as the cross entropy between the predicted distributions and
the real or generated labels. In total, the loss function can be written as:

Loss = Lop + Lip + 95Lcont

where L2D, L1D, and Lcont are the loss for the 2D distances and orientations, 1D orientations, and 2D contacts.

https://www.nature.com/articles/s41467-023-42528-4
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trRosettaRNA - CASP15 Results

Natural RNAs Synthetic RNAs

R1107 R1108 R1116 R1117 R1126 R1128
RMSD=17.9 A RMSD=9.1 A RMSD=10.9 A RMSD=2.7 A RMSD=32.7 A RMSD=22.3 A

R1149 R1156 R1189 R1190 R1136 R1138
RMSD=13.9 A RMSD=16.6 A RMSD=16.3 A RMSD=16.0 A RMSD=41.6 A RMSD=40.8 A

https://www.nature.com/articles/s41467-023-42528-4
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trRosettaRNA - CASP15 Results

Table 2 | Results for 12 RNA targets in CASP15

Target type Target ID RMSD (A)
Yang-Server Alchemy _RNA2 Chen RNApolis Deep learning best® Overall best
Natural R1107 17.9 (4.3°) 4.5 6.5 8.8 5.9 4.5
R1108 9.1(4.8%) 4.5 6.0 8.5 4.8 4.5
R1116 10.9 17.3 18.0 12.7 7.9 4.8
R1117 2.7 2.3 2.0 2.7 2.7 2.0
R1149 13.9 (10.6°) 10.5 14.0 18.2 6.9 6.9
R1156 16.6 7.6 1.0 171 12.9 54
R1189 16.3 22.0 21.2 18.7 22.8 16.3
R1190 16.0 22.0 18.8 22.4 22.2 16.0
Average 12.9 (10.3°) 1.3 12.2 13.6 10.8 7.5
Synthetic R1126 32.7 8.8 12.6 20.0 30.2 8.9
R1128 22.3 4.3 6.7 14.6 14.3 4.3
R1136 41.6 S 10.9 11.0 27.3 1.2
R1138 40.8 7.8 12.3 9.6 35.5 7.8
Average 34.4 7.0 10.6 13.8 26.8 7.0
Overall average 20.1(18.3%) 99 1.2 13.7 16.1 7.4

2According to the CASP15 abstracts, there are 14 RNA prediction groups utilizing deep learning-based methods to predict RNA structures.
®trRosettaRNA results with secondary structure templates as inputs.
For all compared groups, we evaluate their best-submitted models for each target. The evaluation based on the first predicted model is shown in Table S5.

https://www.nature.com/articles/s41467-023-42528-4

© Debswapna Bhattacharya Al-powered Molecular Modeling | Virginia Tech



trRosettaRNA - CASP15 Results
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trRosettaRNA vs. Automated Non-DL methods
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Figure S2. Performance on 30 independent RNAs. (a) head-to-head comparison between trRosettaRNA and two
representative methods, SImRNA and RNAComposer (n=30 RNAs). The dashed horizontal and vertical lines correspond
to an RMSD of 4 A. The bar plots show the RMSD distributions. (b) the RMSD as a function of the logarithm of the MSA
depth (Nefr). (¢) RMSD as a function of the F1-score of the predicted secondary structure (denoted by SS). (d) RMSD as a
function of the maximum TM-scorerna to prior RNAs. The gray and black dash lines in (d) refer to the TM-scorerna
thresholds of 0.45 and 0.6 (homology match and very good homology match) respectively. The blue, purple, and orange
dots in B-D refer to trRosettaRNA, SImRNA, and RNA Composer, respectively. Source data are provided as a Source Data
file.
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trRosettaRNA vs. Automated Non-DL methods

SimRNA RNAComposer Yang-Server

R1126

R1128

R1136

RMSD=41.6 A RMSD=39.8 A RMSD=41.6 A

Figure S7. Comparison of 3D modelling results for synthetic RNAs in CASP15 between Yang-Server and
representative automated methods. Both predicted 3D structures (in the red cartoon) are superimposed onto the

experimental structures (in the blue cartoon).

https://www.nature.com/articles/s41467-023-42528-4
© Debswapna Bhattacharya Al-powered Molecular Modeling | Virginia Tech 14



DRfold

nature communications

Article https://doi.org/10.1038/s41467-023-41303-9

Integrating end-to-end learning with deep
geometrical potentials for ab initio RNA
structure prediction

Received: 18 January 2023 Yang Li®"28, Chengxin Zhang ®%3#, Chenjie Feng?*2, Robin Pearce?”,
P. Lydia Freddolino®?° | & Yang Zhang ®"%°%”

Accepted: 22 August 2023

Published online: 16 September 2023 . — - -
RNAs are fundamental in living cells and perform critical functions determined

| Check for updates by their tertiary architectures. However, accurate modeling of 3D RNA struc-
ture remains a challenging problem. We present a novel method, DRfold, to
predict RNA tertiary structures by simultaneous learning of local frame rota-
tions and geometric restraints from experimentally solved RNA structures,
where the learned knowledge is converted into a hybrid energy potential to
guide RNA structure assembly. The method significantly outperforms previous
approaches by >73.3% in TM-score on a sequence-nonredundant dataset
containing recently released structures. Detailed analyses showed that the
major contribution to the improvements arise from the deep end-to-end
learning supervised with the atom coordinates and the composite energy
function integrating complementary information from geometry restraints
and end-to-end learning models. The open-source DRfold program with fast
training protocol allows large-scale application of high-resolution RNA struc-
ture modeling and can be further improved with future expansion of RNA
structure databases.

https://www.nature.com/articles/s41467-023-41303-9
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The DRfold System
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based RNA structure prediction.
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DRftold - Training

For training the end-to-end models, two types of loss functions, including the FAPE loss and the inter-N atom
distance loss, are used, i.e.,

Lese = 1.5LpapE + 0.6 Lg;s
The FAPE loss is adapted from AF2. The distance loss function takes the cross-entropy form.

For the geometry model, the Euclidean distance between the P, C4’, and glycosidic N atoms are calculated,
where the distance values for the inter-P atoms, inter-C4’ atoms, and inter-N atoms are discretized into 56, 44,
and 32 bins in the ranges of [2, 30 A], [2, 24 A], and [2, 18 A]. The dihedral angle values are discretized into 36
bins. The loss function of the geometry models is the cross-entropy loss of the distance and dihedral angle
terms.

Adam optimizer was used with an initial learning rate of 1e-3 for 100 epochs. The whole end-to-end model
was trained on a single Nvidia A40 GPU with 32GB of memory, where 6 end-to-end models and 3 geometry
models with different random parameter initializations were trained, and training each of them took 2 weeks.
For the 3 geometry models, it took around 50 epochs of training for 5 days each.

https://www.nature.com/articles/s41467-023-41303-9
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DRfold - Inference

Following the end-to-end and geometry modeling, a combination of two deep-learning energy terms is used to
guide the next step of RNA structure optimization as follows:

Epr, = Eeze + Egeo.

6 models predicted by 6 independent end-to-end models are predicted also used as initial structures for the
optimization system to run L-BFGS algorithm to iteratively update the parameters of the system which
determines the 3D conformations of the RNA models. The conformation with the lowest energy is considered
as the final predicted structure among the 6 different L-BFGS trajectories.

During the first step, they use Arena to construct the standard conformations of the full-atomic structure.

Finally, a full-atom MD minimization is performed using OpenMM to further refine the local structure
geometry, including steric clash and bond-length/angle violation removal.

https://www.nature.com/articles/s41467-023-41303-9
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DRfolgl - Results
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DRfold - Results
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Discussions

Protein Structure Prediction via AF2 RNA Structure Prediction in the post-AF2 Era
1. 1
2. 2
3 3.
= 4.
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