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Generative modeling of biomolecules

* Put simply, generative models are machine learning models which learn to
sample from an underlying distribution.

* (Generating valid, three-dimensional molecular structures is an important goal
for drug design and molecular modeling more widely.

 Example: given some conditions (binding with ligand, secondary structure,
amino acid sequence), can we determine a corresponding structure.

 Recent successes of deep generative models in biomolecules:
o Structure Design: FrameFlow/FrameDiff, Chroma, RFDiffusion

o Structure Prediction: Alpha Fold 3, DiffDock, DiffPack, FlowPack



Earlier deep generative models

e Variation Autoencoders (VAEs) and Generative Adversarial Networks (GANSs)
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Biomolecular structures are complicated
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Deep Generative Model Wishlist

1. Incremental generation
 Break the generation process into smaller steps that are easier to learn
2. Family of interpolating distributions

* |Intermediate steps in the generation process have defined distributions
which interpolate from the data distribution to the latent distribution

3. Simulation-free training

* [raining at generation step t does not require stepping through all previous
steps (typically by using marginal distributions targeting full distribution)



Diffusion models

» Several frameworks satisfy this wishlist and can achieve high-quality sampling
 Diffusion Probabilistic Models
 Flow Matching
 Bayesian Flow Networks

e Diffusion Probabilistic Models (or just diffusion models) are the first and most
influential

 Main idea: inject Gaussian noise into the distribution until it reaches a
normal distribution and learn to reverse the process.



Denoising Diffusion Probabilistic Models (DDPMs)

* Early (and still quite popular) framework for diffusion models
e Uses Markov chains with Gaussian transitions.

* Was one of the first diffusion models to achieve high-quality image
generation.

The noising and denoising process in DDPM



Underlying distribution: X, ~ g(X)
Add Gaussian noise T times to get X, X,, ..., Xt

Forward process is a Markov chain: g(X, | X,_) := /' (X;4/1 = X,_, §1)
where 0 < . < 1 is the variance schedule

Can sarpple at arbitrary ¢ without stepping through MC: a, := 1 — /, and
a,:= | | o then
s=1

a(x, | Xo) = N (X3 \/TXg, (1 — @)D

—

Approaches standard normal distribution: /4 (x; 0, I)



Reverse process: py(X;) = N (X730, 1)

When [, are small, the reverse process can also be written as Gaussian
transitions: py(X,_; | X,) = N (X,_1; Bo(X,, 1), 2y(X,, 1))

Determining g, and 2, will determine the backward process. We set 2, = /1
for simplicity.

Training goal was originally to minimize the negative log likelihood which
seeks to minimize an upper bound (plus some other terms)

Z 4:'q(mlzxco) [DKL(C](Xt—l ‘ Xtax()) H pe(Xt—1 | Xt))]
t>1




* |et’s optimize through gradient descent!

KL divergence terms have exact formulas when distributions are normal.
» Recall: py(X,_; | X)) = N (X,_; By(X,, 1), p1); Just need other distribution.

q(X, | X,_1,X0)q(X;_; | X()

q(X,_1 | X, Xp) =
q(X; | Xp)

=N (X135 (X, X), ﬁtl)

where,

a.p a,(l —a,_;) ~ l —a,_
\/j_txo + \F—Xt and ,Bt = —tlﬂt

1(X,, X,) :=
A% Xo) = - g, | —g,



* Plugging into KL divergence...

1
— ~ 2
q Zﬁt H”t(Xp X()) T ﬂ@(xp t) H + C

* One could train a model off this using gradient descent, but there’s a simpler formulation
not dependent on x_t.

» Re-parameterize based on explicit formula for g(X, | X,). Knowing x_0 allows easy
sampling of x_t:

XX, €) = /XXy +1/1 — qe where € ~ A4 (0,1)

» Then substituting the equivalent value for X, gives

ﬂt(Xt(X()’ 6), XO) — \/Et Xt(X09 €) - \/1ﬁi = c




Since our model knows X, at inference and needs to approximate j, a good
parameterization of i, is

1
X, — Le*g(xt, t)

VA=

So our model is now predicting € given X, and the loss for fixed t becomes

lin
- ——|le —e,(h/ax,++/1 — e, t 2

Tempting to drop the time scaling out front, so let’s try it:

Limpie(0) := E;x cll€ — Ge(ﬁxo +4/1 — e, l|*

This ends up working very well.

ﬂH(Xta t) —




Algorithm 1 Training Algorithm 2 Sampling

l repeat l: x7 ~ N(0,T)
2: XONQ(,XO) 2: fort=1T,...,1do
RN [J{;l(l(f)olif;l({la -+, T}) 32 z~N(0,I)ift > 1,elsez =0
. € ) . L 1 1l —«
5: Take gradient descent step on 4 Xi1 = NGT (xt \/1—5; €0 (xt,t)) T OtZ
VG HG—EQ(\/@th-{—\/].—CTYtE,t)H2 5: end for

6: until converged 6: return xo




Results

e Architecture detalls
e U-Net based architecture for score network
 [=1000 time steps

* Time is embedded with positional encoding from Transformers and added
to residual connections of U-Net

e Variance schedule chosen to be linear with 81 = 107* and Br = 0.02



Generated images from DDPM paper



ProtDiff: an early success In protein generation

 The DDPM framework can be applied to forms of data other than images.

» Diffusion models were applied to molecular generation.

* An early success was seen in “Diffusion Probabilistic Modeling of Protein
Backbones in 3D for the Motif-Scaffolding Problem”

 Focuses on generating new, realistic protein backbones (the position of C-
alpha atoms)

* Additionally describes a method to conditionality generate proteins with
prescribed positions for some backbone atoms (Motif-scaffolding)



Details for unconditional generation

 Moving into three dimensions motivates exploiting the symmetry of the
problem;

e Protein backbones that are rotated will still be considered the same

* Typical to use equivariant networks. Authors use Equivariant Graph Neural
Network (EGNN)

 Backbones are scaled so the center of mass is always at the origin and the
approximate variance of points is the same the standard normal distribution

e 1=1024
* |nitial node embeddings: sinusoidal embeddings of position and time

* |nitial edge embeddings: sinusoidal embedding of relative offset in sequence









