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Diffusion Models
Scalable structure generation for molecular design and 
prediction



Generative modeling of biomolecules
• Put simply, generative models are machine learning models which learn to 

sample from an underlying distribution.


• Generating valid, three-dimensional molecular structures is an important goal 
for drug design and molecular modeling more widely.


• Example: given some conditions (binding with ligand, secondary structure, 
amino acid sequence), can we determine a corresponding structure.


• Recent successes of deep generative models in biomolecules:


• Structure Design: FrameFlow/FrameDiff, Chroma, RFDiffusion


• Structure Prediction: Alpha Fold 3, DiffDock, DiffPack, FlowPack



Earlier deep generative models
• Variation Autoencoders (VAEs) and Generative Adversarial Networks (GANs)

Image from: https://www.mdpi.com/1422-0067/22/21/11741



Biomolecular structures are complicated

RFDiffusion generated structure



Deep Generative Model Wishlist
1. Incremental generation


• Break the generation process into smaller steps that are easier to learn


2. Family of interpolating distributions


• Intermediate steps in the generation process have defined distributions 
which interpolate from the data distribution to the latent distribution


3. Simulation-free training


• Training at generation step t does not require stepping through all previous 
steps (typically by using marginal distributions targeting full distribution)



Diffusion models
• Several frameworks satisfy this wishlist and can achieve high-quality sampling


• Diffusion Probabilistic Models


• Flow Matching


• Bayesian Flow Networks


• Diffusion Probabilistic Models (or just diffusion models) are the first and most 
influential 


• Main idea: inject Gaussian noise into the distribution until it reaches a 
normal distribution and learn to reverse the process.



Denoising Diffusion Probabilistic Models (DDPMs)
• Early (and still quite popular) framework for diffusion models


• Uses Markov chains with Gaussian transitions.


• Was one of the first diffusion models to achieve high-quality image 
generation.

The noising and denoising process in DDPM



• Underlying distribution: 


• Add Gaussian noise T times to get 


• Forward process is a Markov chain:  
where  is the variance schedule


• Can sample at arbitrary  without stepping through MC:  and 

 then


x0 ∼ q(x0)

x1, x2, …, xT

q(xt ∣ xt−1) := 𝒩(xt; 1 − βtxt−1, βtI)
0 < βi < 1

t αt := 1 − βt

αt :=
t

∏
s=1

αs

q(xt ∣ x0) = 𝒩(xt; αtx0, (1 − αt)I)

Approaches standard normal distribution: 𝒩(xT; 0, I)



• Reverse process:  


• When  are small, the reverse process can also be written as Gaussian 
transitions:  


• Determining  and  will determine the backward process. We set  
for simplicity.


• Training goal was originally to minimize the negative log likelihood which 
seeks to minimize an upper bound (plus some other terms) 


pθ(xT) = 𝒩(xT; 0, I)

βt
pθ(xt−1 ∣ xt) = 𝒩(xt−1; μθ(xt, t), Σθ(xt, t))

μθ Σθ Σθ = βtI

X

t>1

Eq(xt|x0) [DKL(q(xt�1 | xt,x0) || p✓(xt�1 | xt))]
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• Let’s optimize through gradient descent!


• KL divergence terms have exact formulas when distributions are normal.


• Recall: ; Just need other distribution.





where, 


  and  

pθ(xt−1 ∣ xt) = 𝒩(xt−1; μθ(xt, t), βtI)

q(xt−1 ∣ xt, x0) =
q(xt ∣ xt−1, x0)q(xt−1 ∣ x0)

q(xt ∣ x0)
⋯
= 𝒩(xt−1; μ̃t(xt, x0), β̃tI)

μ̃t(xt, x0) :=
αtβt

1 − αt
x0 +

αt(1 − αt−1)

1 − αt
xt β̃t :=

1 − αt−1

1 − αt
βt



• Plugging into KL divergence…





• One could train a model off this using gradient descent, but there’s a simpler formulation 
not dependent on x_t.


• Re-parameterize based on explicit formula for . Knowing x_0 allows easy 
sampling of x_t:


  where   


• Then substituting the equivalent value for  gives


𝔼q [ 1
2βt

∥μ̃t(xt, x0) − μθ(xt, t)∥2] + C

q(xt ∣ x0)

xt(x0, ϵ) = αtx0 + 1 − αtϵ ϵ ∼ 𝒩(0, I)

x0

μ̃t(xt(x0, ϵ), x0) =
1
αt (xt(x0, ϵ) −

βt

1 − αt
ϵ)



• Since our model knows  at inference and needs to approximate , a good 
parameterization of  is





• So our model is now predicting  given  and the loss for fixed t becomes





• Tempting to drop the time scaling out front, so let’s try it:





• This ends up working very well.

xt μ̃
μθ

μθ(xt, t) =
1
αt (xt −

βt

1 − αt
ϵθ(xt, t))

ϵ xt

𝔼x0,ϵ [ β2
t

2βtαt(1 − αt)
∥ϵ − ϵθ( αtx0 + 1 − αtϵ, t)∥2]

Lsimple(θ) := 𝔼t,x0,ϵ∥ϵ − ϵθ( αtx0 + 1 − αtϵ, t)∥2





Results
• Architecture details


• U-Net based architecture for score network


• T=1000 time steps


• Time is embedded with positional encoding from Transformers and added 
to residual connections of U-Net


• Variance schedule chosen to be linear with  and 



Generated images from DDPM paper



ProtDiff: an early success in protein generation
• The DDPM framework can be applied to forms of data other than images.


• Diffusion models were applied to molecular generation.


• An early success was seen in “Diffusion Probabilistic Modeling of Protein 
Backbones in 3D for the Motif-Scaffolding Problem”


• Focuses on generating new, realistic protein backbones (the position of C-
alpha atoms)


• Additionally describes a method to conditionality generate proteins with 
prescribed positions for some backbone atoms (Motif-scaffolding)



Details for unconditional generation
• Moving into three dimensions motivates exploiting the symmetry of the 

problem:


• Protein backbones that are rotated will still be considered the same


• Typical to use equivariant networks. Authors use Equivariant Graph Neural 
Network (EGNN)


• Backbones are scaled so the center of mass is always at the origin and the 
approximate variance of points is the same the standard normal distribution


• T=1024


• Initial node embeddings: sinusoidal embeddings of position and time


• Initial edge embeddings: sinusoidal embedding of relative offset in sequence
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