Diffusion Models II SDE formulation and AlphaFold 3

October 8th, 2024

Recap

- diffusion.
 - Forward process: $q(\mathbf{x}_t | \mathbf{x}_{t-1}) :=$
 - Backward process: $p_{\theta}(\mathbf{x}_{t-1} \mid \mathbf{x}_t) =$

$$L_{\text{simple}}(\theta) := \mathbb{E}_{t,\mathbf{x}_0,\boldsymbol{\epsilon}} \|\boldsymbol{\epsilon} - \boldsymbol{\epsilon}_{\theta}(\sqrt{\overline{\alpha}_t}\mathbf{x}_0 + \sqrt{1 - \overline{\alpha}_t}\boldsymbol{\epsilon}, t)\|^2$$

Denoising Diffusion Probabilistic Models (DDPMs) are a popular formulation of

$$\mathcal{N}(\mathbf{x}_{t}; \sqrt{1 - \beta_{t}} \mathbf{x}_{t-1}, \beta_{t} \mathbf{I})$$
$$= \mathcal{N}(\mathbf{x}_{t-1}; \boldsymbol{\mu}_{\theta}(\mathbf{x}_{t}, t), \boldsymbol{\Sigma}_{\theta}(\mathbf{x}_{t}, t))$$

Reformulation resulted in new loss function with improved sample quality

Generalizing the design of diffusion models

- Other frameworks for diffusion models exist (e.g. Noise Conditioned Score Networks) where the data distribution is perturbed with Gaussian noise
- How can we unite these frameworks? How can we easily change the design of diffusion models?
- Idea: previous diffusion models added noise in discrete steps, but we can imagine this as a discretization of a continuous process.
- "Score-based Generative Modeling through Stochastic Differential Equations" gives a continuous formulation of diffusion models [1].

What is a Stochastic Differential Equation?

Differential Equation

- Stochastic Differential Equation (SDE)
 - $\frac{\mathrm{d}\mathbf{x}}{\mathrm{d}t} = \mathbf{f}(\mathbf{x})$

$\frac{\mathrm{d}\mathbf{x}}{\mathrm{d}t} = \mathbf{f}(\mathbf{x}, t)$

$$f(\mathbf{x}, t) + g(t) \frac{\mathrm{d}\mathbf{W}}{\mathrm{d}t}$$

White Noise = "Derivative of Gaussian Random variable"

 $d\mathbf{x} = \mathbf{f}(\mathbf{x}, t)dt + g(t)d\mathbf{W}$

Forward Process

- will perturb this distribution with white noise.
- distribution).
- describing a continuous way of adding noise.
- by $\mathbf{x}(T) \sim p_T$.

• If $\mathbf{x}(0) \sim p_0$ is the data distribution, then the SDE $d\mathbf{x} = \mathbf{f}(\mathbf{x}, t)dt + g(t)d\mathbf{W}$

• Typically, for a long period of time T the distribution of $\mathbf{x}(T) \sim p_T$ will have almost no information about the initial distribution (most often a normal

The SDE is thus describing the forward process of the diffusion model. It is

The backward process will also be given by an SDE with initial condition given

Backward Process

To sample, we solve a reverse-time SDE

$$\mathbf{d}\mathbf{x} = [\mathbf{f}(\mathbf{x}, t) - g(t)^2]$$

which is guaranteed to have the same distributions as the forward SDE.

• Want to learn the score $\nabla_{\mathbf{x}} \log p_t(\mathbf{x})$ for $0 \le t \le T$. For fixed t the objective becomes

$$\mathbb{E}_{\mathbf{X}(0)}\mathbb{E}_{\mathbf{X}(t)|\mathbf{X}(0)}\|\mathbf{s}_{\theta}(\mathbf{X}(t),t)$$

is fixed at $\mathbf{x}(0)$.

sampled.

- $\sqrt{2} \nabla_{\mathbf{x}} \log p_t(\mathbf{x}) dt + g(t) d\mathbf{W}$

$- \nabla_{\mathbf{x}(t)} \log p_{0t}(\mathbf{x}(t) | \mathbf{x}(0)) \|^2$

where $p_{0t}(\mathbf{x}(t) \mid \mathbf{x}(0))$ is the density function of the solution given the initial value

• Most models choose the SDE so that p_{0t} has an exact formula and can be

Benefits of SDE formulation

- SDE formulation generalizes previous models

 - Variance Preserving SDE: $d\mathbf{x} = -$
 - objective
- Deterministic sampling method:

$$\mathbf{d}\mathbf{x} = [\mathbf{f}(\mathbf{x}, t)$$

• Taking increasingly smaller steps in the DDPM and treating β_i as discretization of continuous function $\beta(t)$ gives a forward process that converges to

$$\frac{1}{2}\beta(t)\mathbf{x}dt + \sqrt{\beta(t)}d\mathbf{W}$$

Simplified loss becomes slightly rescaled version of denoising score matching

$$\frac{1}{2}g(t)^2 \nabla_{\mathbf{x}} \log p_t(\mathbf{x})] \mathrm{d}t$$

Improving sampling

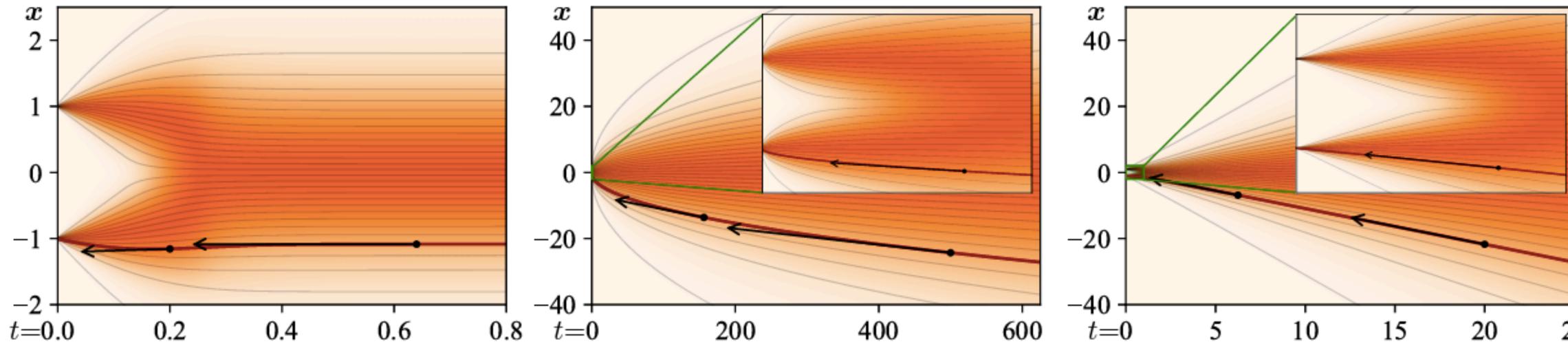
- Problem: it usually takes 100s-1000s of model evaluations to solve reverse SDE/ODE • SDE formulation allows a flexible framework, so we can adjust parameters to
- improve sampling.
- "Elucidating the Design Space of Diffusion-Based Generative Models" discusses choices to improve sampling time [2].

• Variance exploding SDE: $dx = \sqrt{\frac{d}{d}}$

dt

$$\frac{[\sigma^2(t)]}{\mathrm{d}t}\mathrm{d}\mathbf{W}$$

Choosing $\sigma(t) = t$ and parameterizing $\nabla p_t(x) = (D(x, t) - x)/t^2$ leads to ODE $\frac{dx}{dt} = \frac{x - D(x, t)}{t}$



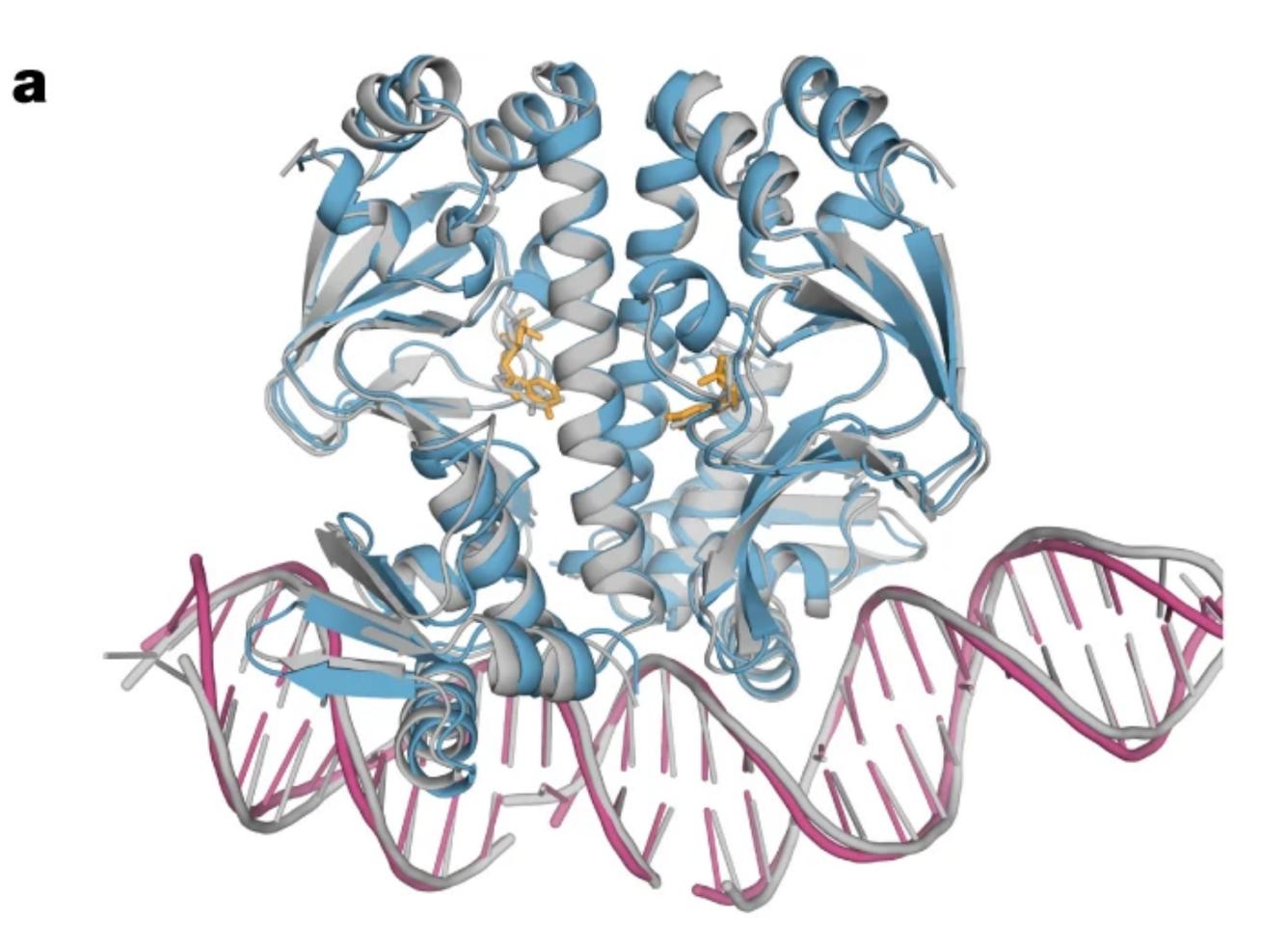
Left: VP SDE, Center: VE SDE, Right: Karras et al. [2]

Algorithm 2Our stochastic sampler with
$$\sigma(t) = t$$
 and $s(t) = 1$.1: procedure STOCHASTICSAMPLER($D_{\theta}(\boldsymbol{x}; \sigma), t_{i \in \{0,...,N\}}, \gamma_{i \in \{0,...,N-1\}}, S_{noise})$ 2: sample $\boldsymbol{x}_0 \sim \mathcal{N}(\mathbf{0}, t_0^2 \mathbf{I})$ 3: for $i \in \{0, \ldots, N-1\}$ do4: sample $\boldsymbol{\epsilon}_i \sim \mathcal{N}(\mathbf{0}, S_{noise}^2 \mathbf{I})$ 5: $\hat{t}_i \leftarrow t_i + \gamma_i t_i$ 6: $\hat{\boldsymbol{x}}_i \leftarrow \boldsymbol{x}_i + \sqrt{\hat{t}_i^2 - t_i^2} \boldsymbol{\epsilon}_i$ 7: $d_i \leftarrow (\hat{\boldsymbol{x}}_i - D_{\theta}(\hat{\boldsymbol{x}}_i; \hat{t}_i))/\hat{t}_i$ 8: $\boldsymbol{x}_{i+1} \leftarrow \hat{\boldsymbol{x}}_i + (t_{i+1} - \hat{t}_i)d_i$ 9: if $t_{i+1} \neq 0$ then10: $d_i \leftarrow (\boldsymbol{x}_i - D_{\theta}(\boldsymbol{x}_{i+1}; t_{i+1}))/t_{i+1}$ 11: $\boldsymbol{x}_{i+1} \leftarrow \hat{\boldsymbol{x}}_i + (t_{i+1} - \hat{t}_i)(\frac{1}{2}d_i + \frac{1}{2}d'_i)$ 12: return \boldsymbol{x}_N

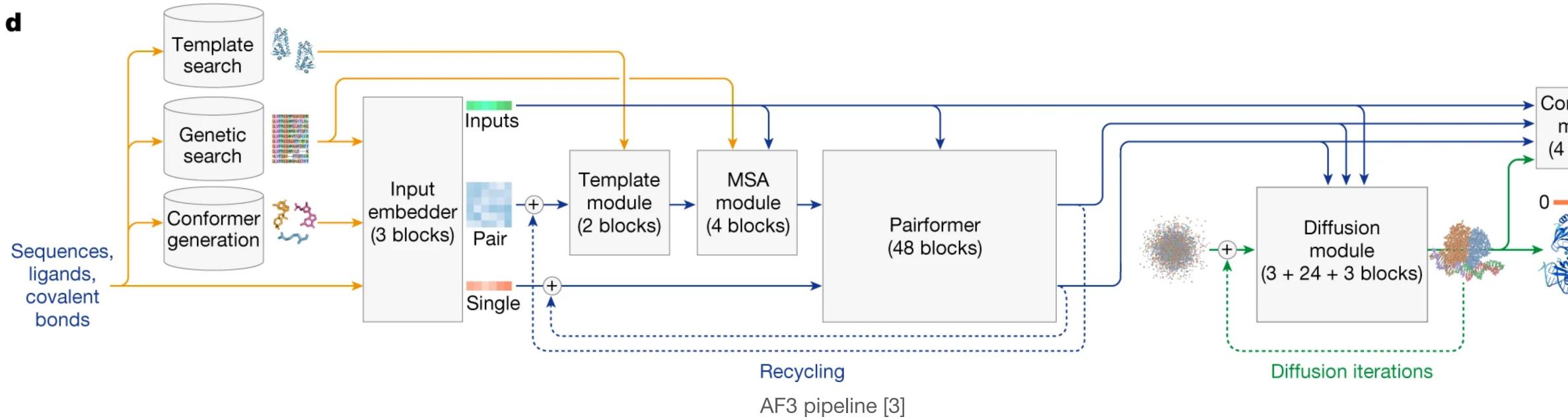
Stochastic sampler from [2]

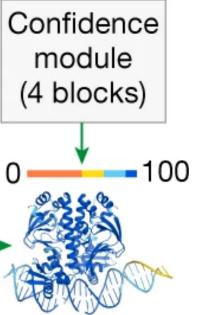
AlphaFold 3

- The most recent iteration of AlphaFold 3 expands its modeling capabilities from just protein structure to the joint structure of complexes including proteins, nucleic acids, ligands, etc.
- Much of the architecture remains similar to AF2, but there are some notable change:
 - The main trunk acts on representations of tokens (polymer residues or atoms from small molecules) instead of just protein residues
 - The evoformer is replaced with a pairformer. The use of MSA is simplified from AF2, and the representation is not retained as the pair representation is updated
 - The structure module is replaced with an all-atom diffusion model
- AF3 is essentially a conditional diffusion model, where most of the compute is done on the conditioning information.

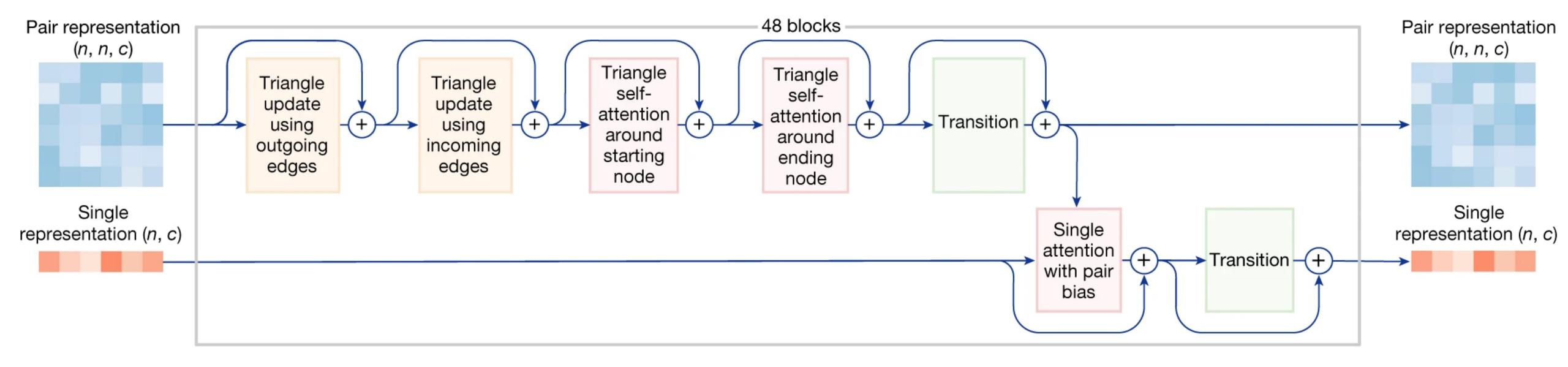


Example structure from AF3 [3]

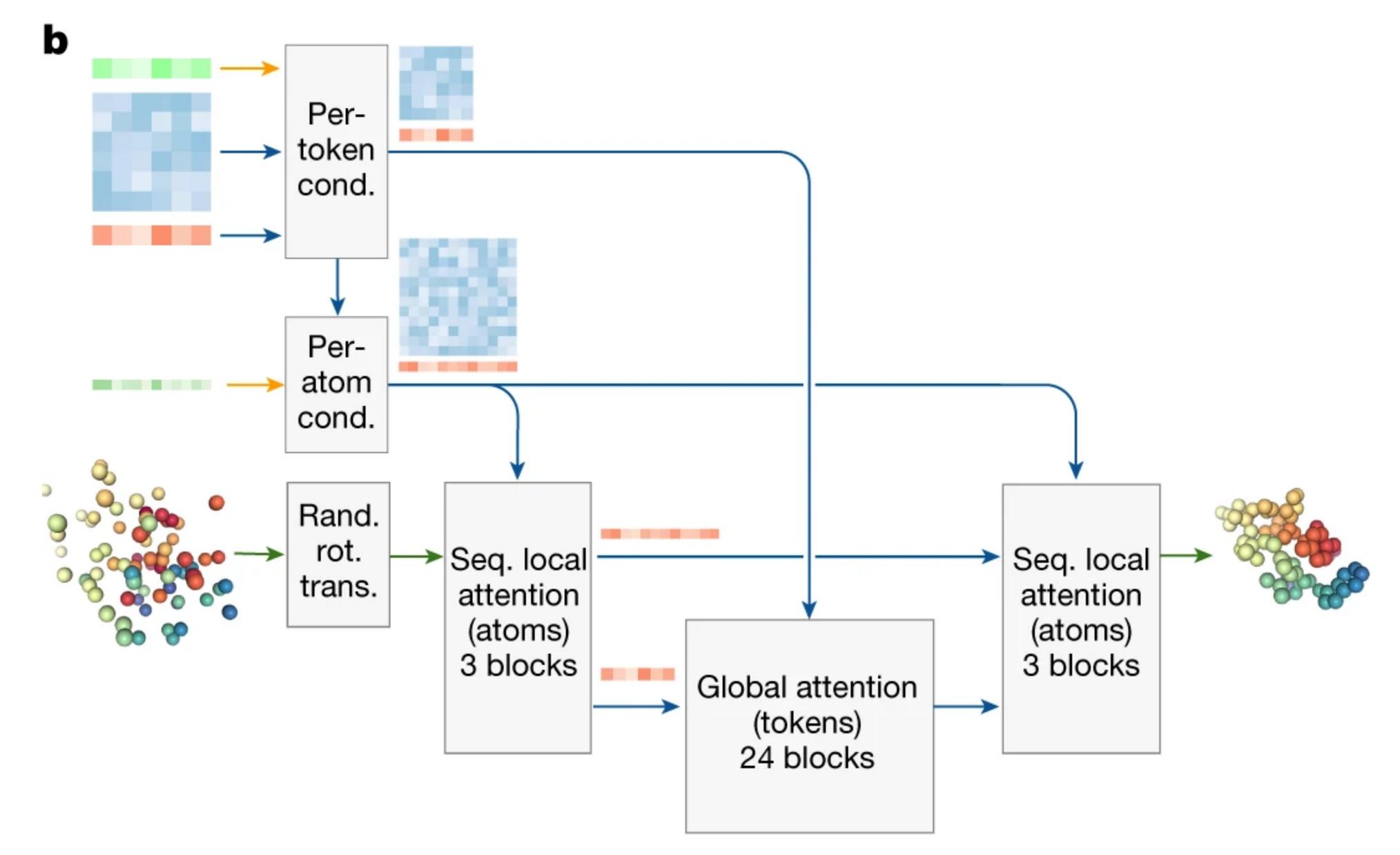




а



Pairformer architecture [2]



Diffusion module [3]

Algorithm 18 Sample Diffusion

- **def** SampleDiffusion({ \mathbf{f}^* }, { $\mathbf{s}_i^{\text{inputs}}$ }, { $\mathbf{s}_i^{\text{trunk}}$ }, { $\mathbf{z}_{ij}^{\text{trunk}}$ }, Noise Schedule [c_0, c_1, \ldots, c_T],
- 1: $\vec{\mathbf{x}}_l \sim c_0 \cdot \mathcal{N}(\vec{\mathbf{0}}, \mathbf{I}_3)$
- 2: for all $c_{\tau} \in [c_1, \ldots, c_T]$ do 3: $\{\vec{\mathbf{x}}_l\} \leftarrow \text{CentreRandomAugmentation}(\{\vec{\mathbf{x}}_l\})$
- 4: $\gamma = \gamma_0$ if $c_\tau > \gamma_{\min}$ else 0

5:
$$\hat{t} = c_{\tau-1}(\gamma + 1)$$

6:
$$\vec{\xi}_l = \lambda \sqrt{\hat{t}^2 - c_{\tau-1}^2} \cdot \mathcal{N}(\vec{\mathbf{0}}, \mathbf{I}_3)$$

7:
$$\vec{\mathbf{x}}_l^{\text{noisy}} = \vec{\mathbf{x}}_l + \vec{\xi}_l$$

 $\{\vec{\mathbf{x}}_{l}^{\text{denoised}}\} = \text{DiffusionModule}(\{\vec{\mathbf{x}}_{l}^{\text{noisy}}\}, \hat{t}, \{\mathbf{f}^{*}\}, \{\mathbf{s}_{i}^{\text{inputs}}\}, \{\mathbf{s}_{i}^{\text{trunk}}\}, \{\mathbf{z}_{ij}^{\text{trunk}}\})$ 8:

9:
$$\vec{\delta}_l = (\vec{\mathbf{x}}_l - \vec{\mathbf{x}}_l^{\text{denoised}})/\hat{t}$$

- 10: $dt = c_{\tau} \hat{t}$
- 11: $\vec{\mathbf{x}}_l \leftarrow \vec{\mathbf{x}}_l^{\text{noisy}} + \eta \cdot dt \cdot \vec{\delta}_l$
- 12: end for

13: return $\{\vec{\mathbf{x}}_l\}$

 $\gamma_0 = 0.8$, $\gamma_{\min} = 1.0$, noise scale $\lambda = 1.003$, step scale $\eta = 1.5$):

 $\vec{\mathbf{x}}_l \in \mathbb{R}^3$

 $\vec{\xi_l} \in \mathbb{R}^3$

Algorithm 20 Diffusion Module

def DiffusionModule({ $\vec{\mathbf{x}}_{l}^{\text{noisy}}$ }, \hat{t} , { \mathbf{f}^{*} }, { $\mathbf{s}_{i}^{\text{inputs}}$ }, { $\mathbf{s}_{i}^{\text{trunk}}$ }, { $\mathbf{z}_{ij}^{\text{trunk}}$ }, $\sigma_{\text{data}} = 16, c_{\text{atom}} = 128, c_{\text{atompair}} = 16, c_{\text{token}} = 768)$:

Conditioning

- 1: $\{\mathbf{s}_i\}, \{\mathbf{z}_{ij}\} = \text{DiffusionConditioning}(\hat{t}, \{\mathbf{f}^*\}, \{\mathbf{s}_i^{\text{inf}}\})$
- # Scale positions to dimensionless vectors with approximately unit variance.

2:
$$\mathbf{r}_l^{\text{noisy}} = \vec{\mathbf{x}}_l^{\text{noisy}} / \sqrt{\hat{t}^2 + \sigma_{\text{data}}^2}$$

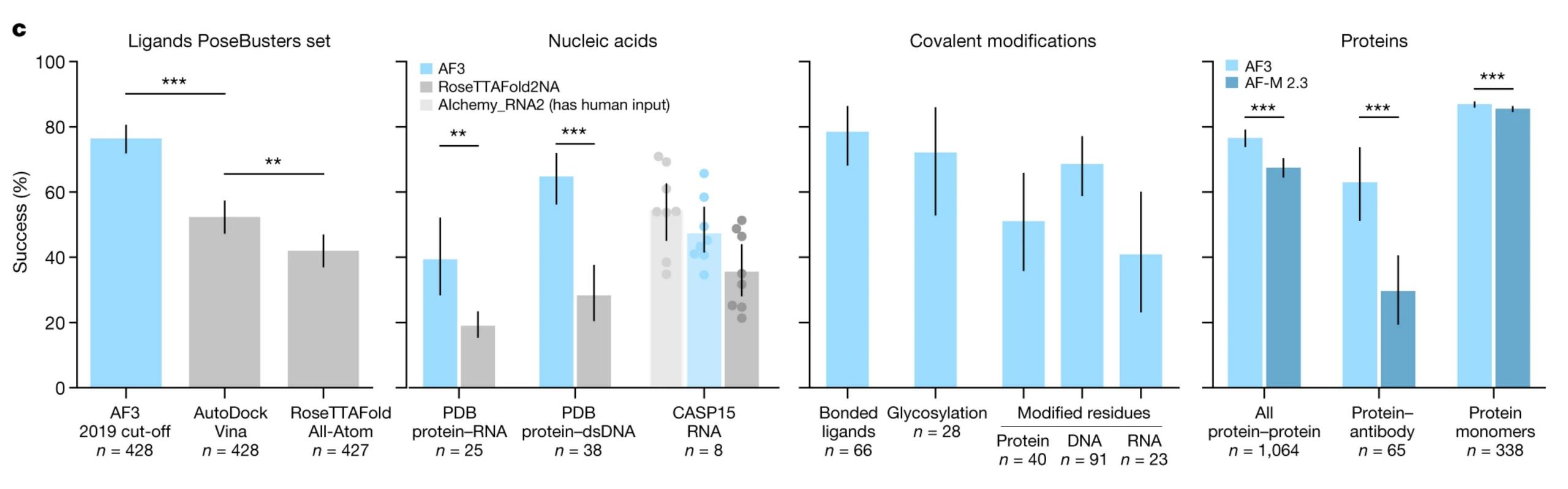
- *# Sequence-local Atom Attention and aggregation to coarse-grained tokens*
- # Full self-attention on token level.
- 4: $\mathbf{a}_i += \text{LinearNoBias}(\text{LayerNorm}(\mathbf{s}_i))$
- 5: $\{\mathbf{a}_i\} \leftarrow \text{DiffusionTransformer}(\{\mathbf{a}_i\}, \{\mathbf{s}_i\}, \{\mathbf{z}_{ij}\}, \{\mathbf{z}_{ij}$
- 6: $\mathbf{a}_i \leftarrow \text{LayerNorm}(\mathbf{a}_i)$
- # Broadcast token activations to atoms and run Sequence-local Atom Attention
- 7: $\{\mathbf{r}_{l}^{\text{update}}\} = \text{AtomAttentionDecoder}(\{\mathbf{a}_{i}\}, \{\mathbf{q}_{l}^{\text{skip}}\}, \{\mathbf{c}_{l}^{\text{skip}}\}, \{\mathbf{p}_{lm}^{\text{skip}}\})$
- # Rescale updates to positions and combine with input positions
- 8: $\vec{\mathbf{x}}_l^{\text{out}} = \sigma_{\text{data}}^2 / (\sigma_{\text{data}}^2 + \hat{t}^2) \cdot \vec{\mathbf{x}}_l^{\text{noisy}} + \sigma_{\text{data}} \cdot \hat{t} / \sqrt{\sigma_{\text{data}}^2 + \hat{t}^2} \cdot \mathbf{r}_l^{\text{update}}$
- 9: return $\{\vec{\mathbf{x}}_l^{\text{out}}\}$

$$^{\mathsf{puts}}\}, \{\mathbf{s}_i^{\mathsf{trunk}}\}, \{\mathbf{z}_{ij}^{\mathsf{trunk}}\}, \sigma_{\mathsf{data}}\}$$

 $\mathbf{r}_l^{\text{noisy}} \in \mathbb{R}^3$

3: $\{\mathbf{a}_i\}, \{\mathbf{q}_l^{\text{skip}}\}, \{\mathbf{c}_l^{\text{skip}}\}, \{\mathbf{p}_{lm}^{\text{skip}}\} = \text{AtomAttentionEncoder}(\{\mathbf{f}^*\}, \{\mathbf{r}_l^{\text{noisy}}\}, \{\mathbf{s}_i^{\text{trunk}}\}, \{\mathbf{z}_{ij}\}, c_{\text{atom}}, c_{\text{atompair}}, c_{\text{token}}\}$ $\mathbf{a}_i \in \mathbb{R}^{c_{ ext{token}}}$

$$\beta_{ij} = 0, N_{block} = 24, N_{head} = 16$$



Task	Dataset	Metric	Notes	Method	N	Mean	95% CI
Ligands	PoseBusters V1	% RMSD < 2 Å	-	RoseTTAFold All-Atom	427	42.0	37.2 - 46.8
			<u></u>	AF3 (2019 cutoff)	428	76.4	72.1 - 80.3
			Holo protein struct. given	EquiBind	428	2.6	1.3 - 4.6
				TankBind DiffDock	428 428	15.0 37.9	11.7 - 18.7 33.2 - 42.6
			Dealect residues energified				
			Pocket residues specified	Vina on AF-M 2.3 DeepDock	428 428	13.1 17.8	10.0 - 16.7 14.3 - 21.7
				Uni-Mol	428	22.9	19.0 - 27.2
				UMol	428	45.0	40.3 - 49.9
				Gold	428	51.2	46.3 - 56.0
				Vina Uni-Mol Docking V2	428 428	52.3 77.6	47.5 - 57.2 73.3 - 81.4
				AF3 (2019 cutoff) pocket specified	428	90.2	87.0 - 92.8
	PoseBusters V2	% RMSD < 2 Å	-	AF3 (2019 cutoff)	308	80.5	75.6 - 84.8
			Holo protein struct. given	EquiBind	308	1.9	0.7 - 4.2
				TankBind	308	15.9	12.0 - 20.5
				DiffDock	308	38.0	32.5 - 43.7
			Pocket residues specified	Vina on AF-M 2.3	308	15.3	11.4 - 19.8
				DeepDock Uni-Mol	308 308	19.5 21.8	15.2 - 24.4 17.3 - 26.8
				Gold	308	58.1	52.4 - 63.7
				Vina	308	59.7	54.0 - 65.3
				AF3 (2019 cutoff) pocket specified	308	93.2	89.8 - 95.7
Nucleic Acids	Protein-RNA	ILDDT		RoseTTAFold2NA	25	19.0	15.6 - 23.2
				AF3	25	39.4	28.5 - 51.9
	Protein-dsDNA	ILDDT		RoseTTAFold2NA AF3	38 38	28.3 64.8	20.7 - 37.5 56.4 - 71.7
	CASP 15 RNA	RNA LDDT		RoseTTAFold2NA	8	35.5	28.3 - 43.8
	CASP IS KINA	KINA LUUT		AF3	8	47.3	41.7 - 55.2
				Alchemy_RNA2 (has human input)	8	54.5	45.3 - 62.4
				RNApolis (has human input)	8	50.5	45.2 - 55.8
				Chen (has human input)	8	49.8	40.7 - 58.5
				Kiharalab UltraFold	8	40.9 37.8	35.1 - 54.3 32.5 - 45.0
Covalent Mod.	Pondod ligando	% RMSD < 2 Å		AF3	66	78.5	68.3 - 86.2
Covalent Mod.	Bonded ligands Glycosylation	% RMSD < 2 Å	high-quality, single-residue	AF3 AF3	28	72.1	53.1 - 85.7
	Glycosylation	N RIVISD SZA	all-quality, single-residue	AF3	167	46.0	40.0 - 52.1
			all-quality, multi-residue	AF3	131	42.4	35.4 - 49.3
	Modified residues	% RMSD < 2 Å		AF3	154	59.9	52.4 - 67.0
	Modified protein residues	% RMSD < 2 Å		AF3	40	51.0	36.0 - 65.6
	Modified DNA residues	% RMSD < 2 Å		AF3	91	68.6	59.0 - 76.9
	Modified RNA residues	% RMSD < 2 Å		AF3	23	40.9	23.4 - 59.9
Proteins	All Protein-Protein	% dockq > 0.23		AF-M 2.3	1064	67.5	64.7 - 70.1
				AF3	1064	76.6	74.0 - 78.9
	Protein-Antibody	% dockq > 0.23		AF-M 2.3	65	29.6	19.6 - 40.4
				AF3	65	62.9	51.4 - 73.5
	Monomers	LDDT		AF-M 2.3	338	85.5	84.7 - 86.1
				AF3	338	86.9	86.2 - 87.6

References

[1] Song, Yang, et al. "Score-based generative modeling through stochastic differential equations." *arXiv preprint arXiv:2011.13456* (2020).

[2] Karras, Tero, et al. "Elucidating the design space of diffusion-based generative models." *Advances in neural information processing systems* 35 (2022): 26565-26577.

[3] Abramson, Josh, et al. "Accurate structure prediction of biomolecular interactions with AlphaFold 3." *Nature* (2024): 1-3.