CS 6824: Deep Learning for Molecular Modeling

Acknowledgement:

Many of the images in the slides are derived from images.google.com or other publicly available sources.

Machine learning and representation learning

https://www.embopress.org/doi/full/10.15252/msb.20156651

Classical neural network

https://www.embopress.org/doi/full/10.15252/msb.20156651

Convolutional neural network

CNN for biological images

AI-powered Molecular Modeling | Virginia Tech

6

Stacking

https://www.embopress.org/doi/full/10.15252/msb.20156651

Interpreting and visualizing convolutional networks

• Visualizing input weights:

First layer features

	In top left?	In top right?	 In bottom right?
	0.21	0.24	0.01
$\langle \rangle$	0.02	0.01	0.25
0	0.01	0.03	0.19

Third layer features

	In left?	In right?	 In bottom?
0	2.51	0.02	2.92
٢	0.03	0.01	0.02
0	0.02	0.01	0.01

- Finding images that maximize neuron activity
- Hiding important image parts
- Visualizing similar inputs in two dimensions

https://www.embopress.org/doi/full/10.15252/msb.20156651

© Debswapna Bhattacharya

Data pre-processing for deep neural networks

https://www.embopress.org/doi/full/10.15252/msb.20156651

Training deep neural networks

- Choice of model architecture
- Determining the number of neurons in a network
- Optimization: Stochastic gradient descent
- Parameter initialization
- Learning rate and batch size
- Learning rate decay
- Batch normalization
- Analyzing the learning curve
- Monitoring training and validation performance

Residual Neural Network

- Instead of directly predicting y from x, predict y-x from x
- Add x and predicted y-x to estimate y
- y-x is the residual
- Equivalent to a shortcut connection between x and y
- Enables the training of deep networks by stacking many layers

Protein contact map

Protein contact map is a binary symmetric matrix capturing interresidue interactions below a predefined distance threshold

Correlated mutation or co-evolution

Co-evolution patters can be analyzed to infer contacts

https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0028766

Correlated mutation or co-evolution

https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0028766

ResNet for protein contact map prediction

https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1005324

ResNet accurately predicts protein contact map

Method	Short			Medium			Long					
	L/10	L/5	L/2	L	L/10	L/5	L/2	L	L/10	L/5	L/2	L
EVfold	0.50	0.40	0.26	0.17	0.64	0.52	0.34	0.22	0.74	0.68	0.53	0.39
PSICOV	0.58	0.43	0.26	0.17	0.65	0.51	0.32	0.20	0.77	0.70	0.52	0.37
CCMpred	0.65	0.50	0.29	0.19	0.73	0.60	0.37	0.23	0.82	0.76	0.62	0.45
pImDCA	0.66	0.50	0.29	0.19	0.72	0.60	0.36	0.22	0.81	0.76	0.61	0.44
Gremlin	0.66	0.51	0.30	0.19	0.74	0.60	0.37	0.23	0.82	0.76	0.63	0.46
MetaPSICOV	0.82	0.70	0.45	0.27	0.83	0.73	0.52	0.33	0.92	0.87	0.74	0.58
Our method	0.93	0.81	0.51	0.30	0.93	0.86	0.62	0.38	0.98	0.96	0.89	0.74

doi:10.1371/journal.pcbi.1005324.t001

Contact prediction accuracy on 150 Pfam families

https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1005324

ResNet accurately predicts protein contact map

correct (red) and incorrect (green) predicted contacts on native contacts (gray)

https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1005324

From contact maps to 3D structures

- Constraint satisfaction using
 - Distance geometry
 - Stochastic optimization

This often leads to accurate 3D structures

predicted models (red) and the native structure (blue)

https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1005324

Differentiable biology

- Biological pattern recognizers
 - 1D vectors comprising DNA/RNA sequences (DNA binding motif)
 - 2D grids with fixed dimensions (protein contact map prediction)
 - Generalizing 2D grids to higher dimensions, for example, by discretizing 3D space into equal-sized cubes (affinity of protein–drug complexes)

• Mechanistic priors

 ML research in biology increasingly incorporates prior knowledge about structure, chemistry, and evolution

• Data priors

- Biology involves analysis of incomplete, noisy and heterogeneous data
- Incorporating priors that account for the data generation process is necessary to minimize the effects of error and fuse disparate data types

https://www.nature.com/articles/s41592-021-01283-4