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Machine learning and representation learning

h<ps://www.embopress.org/doi/full/10.15252/msb.20156651
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Classical neural network

h<ps://www.embopress.org/doi/full/10.15252/msb.20156651



AI-powered Molecular Modeling | Virginia Tech© Debswapna Bha<acharya 4

Convolutional neural network
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Deep learning for regulatory genomics

h<ps://www.embopress.org/doi/full/10.15252/msb.20156651

predicting molecular traits from DNA sequence
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CNN for biological images

h<ps://www.embopress.org/doi/full/10.15252/msb.20156651

biological image analysis
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Stacking

h<ps://www.embopress.org/doi/full/10.15252/msb.20156651
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Interpreting and visualizing convolutional networks

h<ps://www.embopress.org/doi/full/10.15252/msb.20156651

∘ Visualizing input weights: 

∘ Finding images that maximize neuron activity 

∘ Hiding important image parts 

∘ Visualizing similar inputs in two dimensions
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Data pre-processing for deep neural networks

h<ps://www.embopress.org/doi/full/10.15252/msb.20156651
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Training deep neural networks

h<ps://www.embopress.org/doi/full/10.15252/msb.20156651

∘ Choice of model architecture 
∘ Determining the number of neurons in a network 
∘ Optimization: Stochastic gradient descent 
∘ Parameter initialization 
∘ Learning rate and batch size 
∘ Learning rate decay 
∘ Batch normalization 
∘ Analyzing the learning curve 
∘ Monitoring training and validation performance
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Residual Neural Network

∘ Instead of directly predicting y from x, predict y-x from x 
∘ Add x and predicted y-x to estimate y 
∘ y-x is the residual  
∘ Equivalent to a shortcut connection between x and y 
∘ Enables the training of deep networks by stacking many layers
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Protein contact map 
Protein contact map is a binary symmetric matrix capturing inter-
residue interactions below a predefined distance threshold
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Correlated mutation or co-evolution

Co-evolution pa<ers can be analyzed to infer contacts

h<ps://journals.plos.org/plosone/article?id=10.1371/journal.pone.0028766
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Correlated mutation or co-evolution

h<ps://journals.plos.org/plosone/article?id=10.1371/journal.pone.0028766
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ResNet for protein contact map prediction 

h<ps://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1005324



AI-powered Molecular Modeling | Virginia Tech© Debswapna Bha<acharya 16

ResNet accurately predicts protein contact map

h<ps://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1005324

ResNet accurately predicts protein contact map

Contact prediction accuracy on 150 Pfam families
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ResNet accurately predicts protein contact map

h<ps://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1005324

correct (red) and incorrect (green) predicted contacts on native contacts (gray)
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From contact maps to 3D structures

∘ Constraint satisfaction using 
∘ Distance geometry 
∘ Stochastic optimization
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This often leads to accurate 3D structures

h<ps://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1005324

predicted models (red) and the native structure (blue)
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Deep learning revolution

h<ps://www.nature.com/articles/s41592-021-01283-4
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Differentiable biology

h<ps://www.nature.com/articles/s41592-021-01283-4

∘ Biological pa2ern recognizers  
∘ 1D vectors comprising DNA/RNA sequences (DNA 

binding motif) 
∘ 2D grids with fixed dimensions (protein contact map 

prediction) 
∘ Generalizing 2D grids to higher dimensions, for 

example, by discretizing 3D space into equal-sized 
cubes (affinity of protein–drug complexes) 

∘ Mechanistic priors 
∘ ML research in biology increasingly incorporates prior 

knowledge about structure, chemistry, and evolution 

∘ Data priors 
∘ Biology involves analysis of incomplete, noisy and 

heterogeneous data 
∘ Incorporating priors that account for the data 

generation process is necessary to minimize the effects 
of error and fuse disparate data types


