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Machine learning and representation learning

https://www.embopress.org/doi/full/10.15252/msb.20156651
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Classical neural network

https://www.embopress.org/doi/full/10.15252/msb.20156651
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Convolutional neural network
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Deep learning for regulatory genomics

https://www.embopress.org/doi/full/10.15252/msb.20156651

predicting molecular traits from DNA sequence



AI-powered Molecular Modeling | Virginia Tech© Debswapna Bhattacharya 6

CNN for biological images

https://www.embopress.org/doi/full/10.15252/msb.20156651

biological image analysis
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Stacking

https://www.embopress.org/doi/full/10.15252/msb.20156651
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Interpreting and visualizing convolutional networks

https://www.embopress.org/doi/full/10.15252/msb.20156651

∘ Visualizing input weights:


∘ Finding images that maximize neuron activity


∘ Hiding important image parts


∘ Visualizing similar inputs in two dimensions
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Data pre-processing for deep neural networks

https://www.embopress.org/doi/full/10.15252/msb.20156651
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Training deep neural networks

https://www.embopress.org/doi/full/10.15252/msb.20156651

∘ Choice of model architecture

∘ Determining the number of neurons in a network

∘ Optimization: Stochastic gradient descent

∘ Parameter initialization

∘ Learning rate and batch size

∘ Learning rate decay

∘ Batch normalization

∘ Analyzing the learning curve

∘ Monitoring training and validation performance
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Residual Neural Network

∘ Instead of directly predicting y from x, predict y-x from x

∘ Add x and predicted y-x to estimate y

∘ y-x is the residual 

∘ Equivalent to a shortcut connection between x and y

∘ Enables the training of deep networks by stacking many layers
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Protein contact map 
Protein contact map is a binary symmetric matrix capturing inter-
residue interactions below a predefined distance threshold
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Correlated mutation or co-evolution

Co-evolution patters can be analyzed to infer contacts

https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0028766
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Correlated mutation or co-evolution

https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0028766
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ResNet for protein contact map prediction 

https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1005324
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ResNet accurately predicts protein contact map

https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1005324

ResNet accurately predicts protein contact map

Contact prediction accuracy on 150 Pfam families
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ResNet accurately predicts protein contact map

https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1005324

correct (red) and incorrect (green) predicted contacts on native contacts (gray)



AI-powered Molecular Modeling | Virginia Tech© Debswapna Bhattacharya 18

From contact maps to 3D structures

∘ Constraint satisfaction using

∘ Distance geometry

∘ Stochastic optimization
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This often leads to accurate 3D structures

https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1005324

predicted models (red) and the native structure (blue)
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Deep learning revolution

https://www.nature.com/articles/s41592-021-01283-4
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Differentiable biology

https://www.nature.com/articles/s41592-021-01283-4

∘ Biological pattern recognizers 

∘ 1D vectors comprising DNA/RNA sequences (DNA 

binding motif)

∘ 2D grids with fixed dimensions (protein contact map 

prediction)

∘ Generalizing 2D grids to higher dimensions, for 

example, by discretizing 3D space into equal-sized 
cubes (affinity of protein–drug complexes)


∘ Mechanistic priors

∘ ML research in biology increasingly incorporates prior 

knowledge about structure, chemistry, and evolution


∘ Data priors

∘ Biology involves analysis of incomplete, noisy and 

heterogeneous data

∘ Incorporating priors that account for the data 

generation process is necessary to minimize the effects 
of error and fuse disparate data types


