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Convolutional Neural Networks:
The Inflection Point
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CNNis

- Convolutional neural networks have gained a special status

over the last few years as an especially promising form of deep
learning. Rooted in image processing, convolutional layers
have found their way into virtually all subfields of deep

learning, and are very successful for the most part.

> While small and fast, the CNNs are highly representative of the
type of models used in practice to obtain state-of-the-art results
in object-recognition tasks.
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Fully connected NN vs CNN

Fully Connected Convolutional Layer
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The fundamental difference between fully connected and convolutional neural networks is the pattern of
connections between consecutive layers. In the fully connected case, as the name might suggest, each unit is
connected to all of the units in the previous layer.

In a convolutional layer of a neural network, on the other hand, each unit is connected to a (typically small)
number of nearby units in the previous layer. Furthermore, all units are connected to the previous layer in the
same way, with the exact same weights and structure. This leads to an operation known as convolution, giving
the architecture its name.
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Advantage of CNN - shared weights
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CNN for an image

The convolutional filter —a “sliding window” —applied across an image.
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Convolutions for feature extraction

o In neural networks
o A convolution denotes the linear combination of a subset of
units based on a specific pattern of weights.

Clj — z WjiZi
l

o Convolutions are often combined with an activationfunction
to produce a feature

Zj — h(a]) = h z WjiZi
l
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Activation Functions
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Convolution Neural Network (CNN)

> A CNN refers to any network that consists of an alternation

of convolution and pooling layers, where some of the
convolution weights are shared

o Architecture:
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Pooling

> Pooling: commutative mathematical operation that combines
several units

- Examples:
> max, sum, product, average, Euclidean norm, etc.

- Commutative property (order does not matter):
- max(a, b) =max(b, a)
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Digit Recognition
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Benefits of CNN

° Sparse interactions

o Fewer connections

> Parameter sharing

- Fewer weights

> Locally equivariant representation

> Locally invariant to translations

- Handle inputs of varying length
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Parameters

0]

# of filters: integer indicating the #of filters applied to each
window

- kernel size: tuple (width, height) indicating the size of the
window

- Stride: tuple (horizontal, vertical) indicating the horizontal

and vertical shift between each window

- Padding: “valid” or “same”. Valid indicates no input padding.
Same indicates that the input is padded with a border of zeros
to ensure that the output has the same size as the input
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Training CNN

> Convolutional neural networks are trained in the same way

as other neural networks through backpropagation
- AdaGrad, RMSprop, Adam

> Weight sharing:
- Combine gradients of shared weights into a single gradient
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Architecture design

> What is the preferred filter size?

> VGG (Visual Geometry Group at Oxford, 2014): stack of small filters is often preferred to single large
filter
- Fewer parameters
> Deeper network

o Schematic:
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Residual Networks

- Idea: Addressing vanishing gradient problem by introducing residual
connections (a.k.a. skip connections) to shorten paths (He et al. 2015)

o Schematic:
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Applications

> Speech Recognition
- Image recognition
o Machine translation
o Control

- Data with sequential, spatial or tensor patterns
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Image Recognition

o Convolutional Neural Network

- With rectified linear units and dropout

> Data augmentation for transformation invariance
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ImageNet Breakthrough

> Results: ILSVRC-2012
> Krizhevsky, Sutskever, Hinton

Model Top-1 (val) | Top-5 (val) | Top-5 (test)
SIFT + FVs [7] — — 26.2%

| CNN 40.7% 18.2% —

5 CNNs 38.1% 16.4% 16.4%

| CNN* 39.0% 16.6% —

7 CNNs* 36.7% 15.4% 15.3%

Table 2: Comparison of error rates on ILSVRC-2012 validation and
test sets. In italics are best results achieved by others. Models with an
asterisk* were “pre-trained” to classify the entire ImageNet 2011 Fall
release. See Section 6 for details.
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ImageNet Breakthrough

> From Krizhevsky, Sutskever, Hinton
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