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Recurrent neural network

h<ps://doi.org/10.4155/fmc-2018-0358

∘ Standard RNN suffers from vanishing gradient problem   
∘ RNN variants of long short-term memory (LSTM) and gated recurrent 

unit (GRU) aim to address that
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RNN-based generative models with TL

h<ps://doi.org/10.4155/fmc-2018-0358

∘ RNN generative model for de novo molecular generation using 
stacked LSTM layer 

∘ LSTM-based RNN model combined with a sampling 
temperature, which rescales the probability distribution of 
output sequences
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RNN-based generative models with RL

h<ps://doi.org/10.4155/fmc-2018-0358

∘ REINVENT 
∘ RNN-based generative model for molecular de novo design through augmented 

episodic likelihood-based RL 
∘ Policy-based RL to fine-tune an RNN-based agent for generating molecules with given 

desirable properties
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RNN-based generative models with RL

h<ps://doi.org/10.4155/fmc-2018-0358

∘ ReLeaSE 
∘ Combines the two deep neural networks (generative model G and predictive model P trained 

separately 
∘ G is a stack-augmented RNN (Stack-RNN) architecture to learn hidden rules of forming 

sequences of le<ers for generating valid SMILES molecules 
∘ P is analogous to a Quantitative Structure-Activity Relationship (QSAR) model for molecular 

properties prediction with only taking SMILES string as an input vector. It is based on a deep 
neural network consisting of embedding layer, LSTM layer and two dense layers
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Autoencoders

∘ Autoencoding = Automatically encoding data
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Traditional autoencoders

∘ Deterministic encoding
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Variational autoencoders (VAEs)

∘ Replace the deterministic bo<leneck layer with a stochastic 
sampling operation
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Variational autoencoders (VAEs)

∘ Going from learning a vector of latent variables to a vector of means and variances 
which describe the prob. distribution associated with each of the latent variables 

∘ Both encoder and decoder are probabilistic in nature
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VAE for molecular data

h<ps://doi.org/10.4155/fmc-2018-0358

∘ Encoder: learning to represent molecules in a continuous manner that facilitates 
the prediction and optimization of their properties 

∘ Decoder: learning to map an optimized continuous representation back into a 
molecular with improved properties
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RNN- and AE-based generative models

h<ps://doi.org/10.4155/fmc-2018-0358

∘ ChemVAE 
∘ Encoder converts the discrete representations of molecules (SMILES strings in this case) 

into real-valued fix-dimensional continuous vectors 
∘ Decoder transforms the vectors to SMILES strings 
∘ Adds Gaussian noise to the encoder with penalty term guaranteeing the valid decoding 
∘ A predictive model based on multilayer perceptron, was joined into VAE to predict the 

molecular properties from latent space
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RNN- and AE-based generative models

h<ps://doi.org/10.4155/fmc-2018-0358

∘ Grammar VAE 
∘ Utilizes a context-free grammar (CFG) to form a parse tree, which is decomposed into a sequence of 

production rules defined as 4-tuple G = (V, T, R, S), containing a finite set of nonterminal symbols V, a 
finite set of terminal symbols T, a finite set of production rules R, and a distinct start symbol S.  

∘ The SMILES strings can be generated via adopting production rules recursively (sampling from start 
symbol till no nonterminals left) 

∘ Rules are fed into an encoder with convolutional neural network architecture, then an RNN 
architecture as a decoder for generating syntactically valid SMILES 

∘ Decoder transforms the vectors into SMILES strings
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Generative adversarial network

h<ps://doi.org/10.4155/fmc-2018-0358

∘ A generative model G, which learns a map from a prior to the data distribution to sample new 
data points, 

∘ discriminative model D, which learns to classify whether samples come from the real data 
distribution rather than from G 

∘ Those two models are implemented as deep neural networks and trained alternatively with 
stochastic gradient descent. G and D have different objectives, and they can be seen as two players 
in a minmax game 

∘ G tries to generate samples to fool the discriminator and D tries to differentiate samples correctly
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RNN & GAN-based generative models with RL

h<ps://doi.org/10.4155/fmc-2018-0358

∘ Objective reinforced GAN (ORGAN) 
∘ GAN architecture is combined with reward functions with RL to generate SMILES strings 
∘ Gθ is a LSTM-based generator parameterized by θ, that produces high-quality sequences 

X1:T = (x1, ..., xT). And a discriminator Dφ parameterized by φ is a convolutional neural 
network specifically for sequence classification 

∘ Gθ is trained as an agent and the reward function R was supplied by Dφ  to fool Dφ  
∘ Dφ is trained to classify real and generated SMILES sequences
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RNN & GAN-based generative models with RL

h<ps://doi.org/10.4155/fmc-2018-0358

∘ Reinforced adversarial neural computer 
∘ generator Gθ is a differentiable neural computer (DNC), which is is an LSTM 

controller with external 
∘ memory (like Stack-RNN) and its advantages lay in its powerful memory to 

reconstruct and generate complex and much longer SMILES strings than LSTM 
∘ The action value function of candidate states (partial sequences) was calculated 

by Monte Carlo search.
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Graph-based generative models

h<ps://doi.org/10.4155/fmc-2018-0358

∘ Given an example of chemical molecule, a 2D structure is a graph 
with nodes as its atoms and edges between two nodes as its bonds
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Recurrent graph-based generative models

h<ps://doi.org/10.4155/fmc-2018-0358

∘ GraphNet 
∘ Uses the structure of molecular graph to create representations of atoms and bonds via an information 

propagation process (GRU) ; these representations are used to make sequential graph building 
decisions 

∘ Probabilistic decision-making modules (parameterized by training with known molecular graphs) 
∘ adding a new node or not (with probabilities provided by a faddnode module) 
∘ adding a new edge or not (probabilities provided by faddedge module) 
∘ picking one node to connect to the new node with typed edges (probabilities provided by fnodes 

module)
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Recurrent graph-based generative models

h<ps://doi.org/10.4155/fmc-2018-0358

∘ MolMP 
∘ While GraphNet uses GRU to obtain atomic representations, which are integrated 

to molecular representation by Gated Sum,MolMP uses Graph Convolutional 
Network (GCN) and average pooling for atomic and molecular representations 

∘ The actions of faddnode, faddedge and fnodes are merged into a single fappend step, and fconnect 
is used to avoid the repeated operation of adding edges. It helps to reduce the 
number of steps during generation.adding a new node or not
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VAE-based generative models

h<ps://doi.org/10.4155/fmc-2018-0358

∘ GraphVAE 
∘ A molecular graph can be characterized by G = (A, E,F) with its adjacency matrix A, edge a<ribute 

tensor E, and node a<ribute tensor F 
∘ VAE was used to jointly train an encoder qφ( z|G) and a decoder pθ(G| z) to map between the space of 

graphs G and the continuous embedding z ∈ RD, where φ and θ are learned parameters. A 
regularization term, KL-divergence, is added into the latent code space with a prior isotropic Gaussian 
distribution p( z) = N(0, I ), which is aimed to approximate the two distributions of qφ( z|G) and p( z). 
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VAE & RNN-based generative models

h<ps://doi.org/10.4155/fmc-2018-0358

∘ NeVAE 
∘ A step-wise generative model for undirected molecular graphs based on VAEs. 
∘ Defines a probabilistic encoding for each atom by extracting atomic information from K different layers 
∘ This information is fed into a neural network to make the product obey the stand normal distribution for 

each atom  
∘ This atom-based embedding strategy is invariant to permutations of the atoms and do not depend on the 

number of atoms and bonds, thus allowing for variable-sized molecular graphs 
∘ A whole molecular graph is decoded out with dynamic recurrent updating of the edges and edge weight
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Adversarial autoencoder

h<ps://doi.org/10.4155/fmc-2018-0358

∘ Inspired by VAE and GAN, AAE is proposed as a standard AE regularized by an adversarial 
learning (AL) procedure rather than a KL divergence penalty 

∘ While the KL regularization in VAE is usually used to impose a prior distribution on the latent code 
z, the AL regularization in AAE is utilized to match the posterior distribution to a prior distribution 

∘ While the posterior distribution in VAE is usually a Gaussian distribution with mean and variance 
predicted by the encoder, posterior distribution in AAE is encouraged to match a prior arbitrary 
distribution 

∘ G tries to fool the discriminator D by mimicking the prior arbitrary distribution
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h<ps://doi.org/10.4155/fmc-2018-0358


