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Recurrent neural network
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> Standard RNN suffers from vanishing gradient problem
> RNN variants of long short-term memory (LSTM) and gated recurrent

unit (GRU) aim to address that

https://doi.org/10.4155/fmc-2018-0358
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RNN-based generative models with TL

- RNN generative model for de novo molecular generation using
stacked LSTM layer

> LSTM-based RNN model combined with a sampling
temperature, which rescales the probability distribution of
output sequences

https://doi.org/10.4155/fmc-2018-0358

© Debswapna Bhattacharya Al-powered Molecular Modeling | Virginia Tech 3



RNN-based generative models with RL

- REINVENT
- RNN-based generative model for molecular de novo design through augmented
episodic likelihood-based RL
> Policy-based RL to fine-tune an RNN-based agent for generating molecules with given
desirable properties
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RNN-based generative models with RL

o ReLeaSE

- Combines the two deep neural networks (generative model G and predictive model P trained

separately

o G is a stack-augmented RNN (Stack-RNN) architecture to learn hidden rules of forming
sequences of letters for generating valid SMILES molecules

- P is analogous to a Quantitative Structure-Activity Relationship (QSAR) model for molecular
properties prediction with only taking SMILES string as an input vector. It is based on a deep
neural network consisting of embedding layer, LSTM layer and two dense layers
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> Generated SMILES
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Autoencoders

How can we learn this latent space!
Train the model to use these features to reconstruct the original data

2 1 |||||‘?

L(x,%) = ||x = 2| Loss function doesn't
use any labels"

- Autoencoding = Automatically encoding data
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Traditional autoencoders

.C(x, f) = IIx - fll2 Loss function doesn't
use any labels!

> Deterministic encoding
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Variational autoencoders (VAEs)
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> Replace the deterministic bottleneck layer with a stochastic
sampling operation
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Variational autoencoders (VAEs)
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Encoder computes: pg (z]x) Decoder computes:qg (x]|2)

AN

L(¢, @) = (reconstruction loss) + (regularization term)

- Going from learning a vector of latent variables to a vector of means and variances
which describe the prob. distribution associated with each of the latent variables
- Both encoder and decoder are probabilistic in nature
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VAE for molecular data
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ELBO (¢, 0) = By, [logpe (x12] — KL (g4 (%) II (2)

- Encoder: learning to represent molecules in a continuous manner that facilitates
the prediction and optimization of their properties

- Decoder: learning to map an optimized continuous representation back into a
molecular with improved properties

https://doi.org/10.4155/fmc-2018-0358
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RNN- and AE-based generative models

> ChemVAE
- Encoder converts the discrete representations of molecules (SMILES strings in this case)
into real-valued fix-dimensional continuous vectors
> Decoder transforms the vectors to SMILES strings
> Adds Gaussian noise to the encoder with penalty term guaranteeing the valid decoding
oA predictive model based on multilayer perceptron, was joined into VAE to predict the
molecular properties from latent space

Predictive
model
$ B
niccccc S nicccccl
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RNN- and AE-based generative models

> Grammar VAE

- Utilizes a context-free grammar (CFG) to form a parse tree, which is decomposed into a sequence of
production rules defined as 4-tuple G = (V, T, R, S), containing a finite set of nonterminal symbols V, a
finite set of terminal symbols T, a finite set of production rules R, and a distinct start symbol S.

- The SMILES strings can be generated via adopting production rules recursively (sampling from start
symbol till no nonterminals left)

o Rules are fed into an encoder with convolutional neural network architecture, then an RNN
architecture as a decoder for generating syntactically valid SMILES

> Decoder transforms the vectors into SMILES strings

Predictive
model
SMILES =S e Mask out
3 O 3 invalid rules
Grapmar fone-hot ||c fof oy G'TLBO sl |

Parse tree —L2ClOIS O | L——'(_xz ——4 59 |8/ ——  Sample rules
1 — < lLatentspace & ) Concatenate
Extract rules : RNN terminals
Generated

SMILES
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(Generative adversarial network
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> A generative model G, which learns a map from a prior to the data distribution to sample new
data points,

o discriminative model D, which learns to classifty whether samples come from the real data
distribution rather than from G

> Those two models are implemented as deep neural networks and trained alternatively with
stochastic gradient descent. G and D have different objectives, and they can be seen as two players
in a minmax game

m(i;n max V (D, G) = Ex~pyaiv) [logD (2) | + E ez [log (1 — D (G (2))]

o G tries to generate samples to fool the discriminator and D tries to differentiate samples correctly

https://doi.org/10.4155/fmc-2018-0358
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RNN & GAN-based generative models with RL

> Objective reinforced GAN (ORGAN)
> GAN architecture is combined with reward functions with RL to generate SMILES strings
> Ggis a LSTM-based generator parameterized by 0, that produces high-quality sequences
X1:T = (x1, ..., xT). And a discriminator Dy, parameterized by ¢ is a convolutional neural
network specifically for sequence classification
> Gg is trained as an agent and the reward function R was supplied by D¢ to fool Dd
> Dy is trained to classify real and generated SMILES sequences
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RNN & GAN-based generative models with RL

- Reinforced adversarial neural computer
- generator Gg is a differentiable neural computer (DNC), which is is an LSTM
controller with external
- memory (like Stack-RNN) and its advantages lay in its powerful memory to
reconstruct and generate complex and much longer SMILES strings than LSTM
- The action value function of candidate states (partial sequences) was calculated

by Monte Carlo search.
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Graph-based generative models
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> (Given an example of chemical molecule, a 2D structure is a graph
with nodes as its atoms and edges between two nodes as its bonds

https://doi.org/10.4155/fmc-2018-0358
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Recurrent graph-based generative models

> GraphNet
- Uses the structure of molecular graph to create representations of atoms and bonds via an information

propagation process (GRU) ; these representations are used to make sequential graph building

decisions
> Probabilistic decision-making modules (parameterized by training with known molecular graphs)

- adding a new node or not (with probabilities provided by a faiinose module)
- adding a new edge or not (probabilities provided by fiuiesse module)
o picking one node to connect to the new node with typed edges (probabilities provided by fodes

module)
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Recurrent graph-based generative models

o MolMP

- While GraphNet uses GRU to obtain atomic representations, which are integrated
to molecular representation by Gated Sum,MolMP uses Graph Convolutional
Network (GCN) and average pooling for atomic and molecular representations

> The actions of faddnode, faddedge AN frodes are merged into a single foppend step, and feonnect
is used to avoid the repeated operation of adding edges. It helps to reduce the
number of steps during generation.adding a new node or not
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VAE-based generative models

- GraphVAE
- A molecular graph can be characterized by G = (A, E,F) with its adjacency matrix A, edge attribute
tensor E, and node attribute tensor F
- VAE was used to jointly train an encoder q¢( z1G) and a decoder pg(G| z) to map between the space of
graphs G and the continuous embedding z € RP, where ¢ and O are learned parameters. A
regularization term, KL-divergence, is added into the latent code space with a prior isotropic Gaussian
distribution p( z) = N(0, I ), which is aimed to approximate the two distributions of q¢( zIG) and p( z).
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VAE & RNN-based generative models

- NeVAE

> A step-wise generative model for undirected molecular graphs based on VAEs.

> Defines a probabilistic encoding for each atom by extracting atomic information from K different layers

° This information is fed into a neural network to make the product obey the stand normal distribution for
each atom

> This atom-based embedding strategy is invariant to permutations of the atoms and do not depend on the
number of atoms and bonds, thus allowing for variable-sized molecular graphs

> A whole molecular graph is decoded out with dynamic recurrent updating of the edges and edge weight
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Adversarial autoencoder
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o Inspired by VAE and GAN, AAE is proposed as a standard AE regularized by an adversarial

learning (AL) procedure rather than a KL divergence penalty

o While the KL regularization in VAE is usually used to impose a prior distribution on the latent code

z, the AL regularization in AAE is utilized to match the posterior distribution to a prior distribution

o While the posterior distribution in VAE is usually a Gaussian distribution with mean and variance

predicted by the encoder, posterior distribution in AAE is encouraged to match a prior arbitrary

distribution

o G tries to fool the discriminator D by mimicking the prior arbitrary distribution
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Graph-based generative models:
1) 2D undirected graph with nodes (as atoms) and edges (as bonds);
2) Molecular graphs are more expressive on chemical properties than

SMILES

1) Generator for generating adjacency

tensor and feature matrix;

2) AL and RL for scoring molecular
graphs;

3) High valid, novel, and low unique;

J—iGAN-based with RL

RNN & VAE-based with’
BO:

1) VAE is used to built
the latent space;

2) BO on latent space

| for exploring better

molecules;
3) RNN for encoding
or decoding graphs;

4) Size-free.

4) Size limit MolGAN
1) Encode various graphs;
2) Invariant to node permutations;
3) Low complexity for inference;
4) Masking can guarantee a set of -
local structural and functional
properties.
1) High valid, novel NeVAE
N
1) Encode various graphs;
2) Invariant to node permutations;
3) Valency masking;
4) High valid, novel, and unique CGVAE
1) Fragmentation for generating valid
intermediate graphs; N
2) MPN for graph encoder;
3) High valid, Rs JT-VAE )
1) Graph-level VAE on small graphs;
2) Moderate valid, novel, and low
unique;
3) Quadratic complexity for inference;
4) Size limit GraphVAE

J—{ VAE-based with CG

Recurrent graph-based:

GraphNet | 1) Learn a graph-level distribution as a generator;
MoIMP; MolRNN 2) CG is set for single or multiple objectives;

4) High valid, novel;
5) Expensive computation

GCPN {3) RL with AL for single objectives;
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 SMILES-based generative models:
1) A linear string notation used in chemistry;
. 2) Similar molecules may have markedly different SMILES strings.

Segler et al.

"RNN-based with TL:

1) Train a generator with a large
2) TL towards a special case;

3) High valid, novel;

4) Fine-tuning requires known actives;
. 5) Generate specific putative actives.

Bjerrumetal.  Synthesizability evaluation

dataset 1) Fragment-based generation;

Gupta et al. 2) Low-data drug design

Experimentally validation of synthesizable bioactives
Merk et al. (the best one with 60 nm)

1) Stack-RNN in suitable for longer SMILES with higher Din
and Dex than regular RNNs;

" RNN-based with RL:

1) Train a generator with a large
dataset;

2) RL for a user defined reward;
3) High valid, novel;

4) RL can reduce the forgetting
_risk of TL.

N 2) Descriptor-free predictive models;
ReLeaSE  3) Synthesizability evaluation

1) RL for the combination of SMILES syntax (high valid)
and the scoring function;
2) Scaffold hopping;
Reinvent 3) Recapture experimentally confimed actives

ChemTS  2) Higher generative efficiency than ChemVAE and GrammarVAE

Deep 1) AL & RL for optimizing continuous value rather than
generative categorical data;
models Organ; 2) Unstable valid, unique;
Organic 3) Find many repetitive patterns
,

i

RNN & GAN-based with RL:
1) Train a generator with a
large dataset;

2) AL and RL for a special
goal.

3) Moderate valid, unique.

1) DNC, like Stack-RNN, is suitable for long SMILES;

2) Higher unique and lower valid than organic;

3) Generate more unique, diverse and complex structures than ORGANIC;
. RANC 4 Less efficient in controlling valid SMILES strings

1) ATNC is an improved RANC with AT block;
2) More stable than ORGANIC;

\_ATNC  3) 7/50 novel molecules with inhibition potency

ChemVAE Low valid

1) CFG for parsing SMILES;
GrammarVAE  2) Higher valid than ChemVAE

'RNN & AE-based with BO:
1) AE is used to construct the latent
space;
2) CNN for encoding or RNN for
decoding SMILES;
2) BO on the latent space for exploring

kbetter molecules

N 1) Offline SDT check for SMILES generation;
SD-VAE  2) Higher valid than GrammarVAE
B

DruGAN  Applied AAE on fingerprints

1) AAE is more suitable for SMILES inputs than VAE;
2) Uniform distribution is better than Gaussian
AAE | Blaschke et al. distribution on AAE

1) Improved conditional generation for AAE;
2) A semisupervised extension for unknown labels;
ECAAE  3) A selective inhibitor of JAK3
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