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CS 6824: 
A<ention and Transformers for 

Prediction of Protein Structures and 
Interactions: RoseTTAFold
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AlphaFold2 and RoseTTAFold

https://www.nature.com/articles/s41586-021-03819-2

https://www.ipd.uw.edu/2021/07/rosettafold-accurate-protein-structure-prediction-accessible-to-all/
https://www.science.org/doi/10.1126/science.abj8754
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The RoseTTAFold System

In this architecture, information flows back and forth between the 1D amino acid sequence information, the 2D distance map, and 
the 3D coordinates, allowing the network to collectively reason about relationships within and between sequences, distances, and 
coordinates. By contrast, reasoning about 3D atomic coordinates in the two-track AlphaFold2 architecture happens after processing 
of the 1D and 2D information is complete (although end-to-end training does link parameters to some extent). 

To generate final models, combined and averaged the 1D features and 2D distance and orientation predictions produced for each of 
the crops and then used two approaches to generate final 3D structures. In the first, the predicted residue-residue distance and 
orientation distributions are fed into pyRoseKa to generate all-atom models. In the second, the averaged 1D and 2D features are fed 
into a final SE(3)-equivariant layer, and, after end-to-end training from amino acid sequence to 3D coordinates,

https://www.science.org/doi/10.1126/science.abj8754



3-track Blocks

https://www.science.org/doi/10.1126/science.abj8754



Performance of different model architectures

https://www.science.org/doi/10.1126/science.abj8754
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SE(3)-Transformers

https://arxiv.org/pdf/2006.10503

SE(3)-Transformer is a variant of the self-a6ention module for 3D point clouds and graphs, which is 
equivariant under continuous 3D roto- translations 
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In the case of self-a/ention the query, key, and value vectors are embeddings of the input features, so 

where {hQ , hK , hV } are, in the most general case, neural networks. The query qi is associated with a 
point i in the input, which has a geometric location xi. Thus if we have n points, we have n possible 
queries. For query qi, we say that node i a/ends to all other nodes j ̸= i. 

A key property of self-a6ention is permutation equivariance. Permutations of point labels 1, ..., n lead 
to permutations of the self-a6ention output. This guarantees the a6ention output does not depend 
arbitrarily on input point ordering. 

The SE(3)-transformer is a special case of this a6ention mechanism, inheriting permutation 
equivariance. However, it limits the space of learnable functions to rotation and translation 
equivariant ones.
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SE(3)-Transformers

https://arxiv.org/pdf/2006.10503

A6ention mechanism 



Equivariance



SE(3)-Transformers

https://arxiv.org/pdf/2006.10503



SE(3)-Transformers

https://arxiv.org/pdf/2006.10503

A) Each layer of the SE(3)-Transformer maps from a point cloud to a point cloud (or graph to graph) 
while guaranteeing equivariance. For classification, this is followed by an invariant pooling layer and 
an MLP. B) In each layer, for each node, a6ention is performed. Here, the red node a6ends to its 
neighbours. A6ention weights (indicated by line thickness) are invariant w.r.t. input rotation. 



RoseTTAFold 1D and 2D Tracks

https://www.science.org/doi/10.1126/science.abj8754

(A) MSA updates via self-a6ention on MSA features. The a6ention maps over residues are softly 
tied. (B) Pair feature updates based on co-evolution signals derived from MSA features by taking 
outer-products and weighted averages. (C) Pair feature refinement through axial a6ention. (D) MSA 
feature updates based on a6ention maps derived from given pair features. 



RoseTTAFold 3D Track

https://www.science.org/doi/10.1126/science.abj8754

(E) Initial N, Cɑ, C coordinate generation using Graph Transformer architecture. (F) 3D coordinate refinements 
with SE(3)-Transformer. degree 0 node features (scaler node features, called state features here) are used to 
calculate a<ention maps for structure-based MSA. degree 1 node features (vector node features) encode the 
positions of N and C atoms by including displacement vectors to the corresponding Cɑ atoms.(G) MSA feature 
updates based on given 3D structures using masked a<ention maps.



RoseTTAFold Architecture

https://www.science.org/doi/10.1126/science.abj8754

1. Update pair features with coevolution signal derived from MSA features 

2. Refine pair features via row and column-wise self-a<ention 

3. Update MSA features based on structure information encoded in pair features 

4. Initial 3D structure prediction using Graph Transformer-based architecture 

Input is defined as a fully connected graph with nodes representing the residues in the protein. The node and edge embeddings 
are learned from the averaged MSA features combined with a one-hot encoded query sequence and the pair features along with 
sequence separation, respectively. The backbone coordinates are estimated using a stack of four Graph Transformer layers 
followed by a simple linear transformation to predict Cartesian coordinates of N, Cɑ, C atoms for each residue node. 

5. Structure updates through SE(3)-Transformer 

6. Update MSA features based on a 3D structure 

Similar to the MSA updates based on pair features in the 2-track model, MSA features are updated based on aKention maps 
derived from the current 3D structures. Four aKention maps are calculated based on the state features, and they are masked based 
on the Cɑ distances with four different cutoffs (8, 12, 16, and 20 Å) so that it only aKends to the neighbors in 3D space. 

7. Residue pairwise distance and orientation prediction 

8. Additional structure module for iterative refinement through the network



RoseTTAFold Results

https://www.science.org/doi/10.1126/science.abj8754

(B) Average TM-score of prediction methods on the CASP14 targets. Zhang-server and BAKER-
ROSETTASERVER were the top two server groups, whereas AlphaFold2 and BAKER were the top two human 
groups in CASP14; BAKER-ROSETTASERVER and BAKER predictions were based on trRose<a. Predictions 
with the two-track model and RoseTTAFold (both end-to-end and pyRose<a version) were completely 
automated. (C) Blind benchmark results on CAMEO medium and hard targets; model accuracies are TM-score 
values from the CAMEO website (h"ps://cameo3d.org/). In (B) and (C), the error bars represent a 95% 
confidence interval.

https://cameo3d.org/


RoseTTAFold models provide insights into function

https://www.science.org/doi/10.1126/science.abj8754

Deficiencies in TANGO2 (transport and Golgi organization protein 2) lead to metabolic disorders, and the protein plays an unknown role 
in Golgi membrane redistribution into the endoplasmic reticulum. The RoseTTAFold model of TANGO2 adopts an N-terminal nucleophile 
aminohydrolase (Ntn) fold (Fig. 3A) with well-aligned active-site residues that are conserved in TANGO2 orthologs (Fig. 3B). 



A<ention maps used to update MSA

https://www.science.org/doi/10.1126/science.abj8754



Iterative refinement using SE(3)-Transformers

https://www.science.org/doi/10.1126/science.abj8754
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Discussions
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