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RoseTTAFold: Accurate protein structure prediction accessible
to all
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The RoseTTAFold System
A 2-track block [ 3-track block
§ ,:' BB-only model

1D track
I SE(3) iterative

Cropped MSA

>

refinement

Masked
Attention

Attention

Combine
all crops

Cro ea }
se tf):nce Graph- Gradient-based
9 Transformer folding
& templates
\I Q) e
&\\‘, % vy \%
(€N |7 [ EDN " TEMN
https://www.science.org/doi/10.1126/science.abj8754 | ¢ ) . CJ/" SE(3)-Transformer \CH

| 3D track l Full atom model
In this architecture, information flows back and forth between the 1D amino acid sequence information, the 2D distance map, and
the 3D coordinates, allowing the network to collectively reason about relationships within and between sequences, distances, and

coordinates. By contrast, reasoning about 3D atomic coordinates in the two-track AlphaFold2 architecture happens after processing
of the 1D and 2D information is complete (although end-to-end training does link parameters to some extent).

To generate final models, combined and averaged the 1D features and 2D distance and orientation predictions produced for each of
the crops and then used two approaches to generate final 3D structures. In the first, the predicted residue-residue distance and
orientation distributions are fed into pyRosetta to generate all-atom models. In the second, the averaged 1D and 2D features are fed
into a final SE(3)-equivariant layer, and, after end-to-end training from amino acid sequence to 3D coordinates,
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3-track Blocks
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Fig. S13. Two different 3-track block definitions. (A) MSA and pair features are synchronized
before structure updates. (B) The structure 1s updated based on unsynchronized MSA and pair
features. The numbers 1n parentheses indicate the order of calculation.
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Performance of different model architectures

Table S1. Performance of different model architectures in terms of inter-residue geometry
prediction loss (cross entropy), top L long-range contact accuracy and Co-IDDT.

Architecture Inter-residue Top L long-range C..IDDT
geometry loss contact accuracy

Single Track (Sequential processing of MSA and pair feature)
Architecture 1) Hand-crafted features + 2D convolution 5.56 54% -
Architecture 2) MSA encoder + 2D convolution 5.49 56% -
Architecture 3) MSA encoder + Axial attention 5.14 58% -
2-track (Parallel track for MSA and pair features)
Architecture 4) Untied + addition + cross 5.54 54% -
Architecture 5) Untied + addition + direct 5.18 58% -
Architecture 6) Untied + concat + direct 5.01 60% -
Architecture 7) Soft-tied + concat + direct 4.84 62% -
Architecture 8) architecture 7 + scale-up 4.50 67% -
Architecture 9) architecture 8 + SE(3) structure module 4.54 67% 0.70
3-track (Parallel track for MSA, pair, and 3D coordinates)
Architecture 10) Structure update w/ unsynchronized o
MSA and pair features (Fig. S13B) 4.63 64% 0.68
Architecture 11) Structure update w/ synchronized o
MSA and pair features (Fig. S13A) 4.36 69% 0.72
Architecture 12) architecture 11 + SE(3) structure 439 69% 0.77

module
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SE(3)-Transformers

SE(3)-Transformers: 3D Roto-Translation
Equivariant Attention Networks

Fabian B. Fuchs*! Daniel E. Worrall*

Bosch Center for Artificial Intelligence Amsterdam Machine Learning Lab, Philips Lab
A2l Lab, Oxford University University of Amsterdam
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https://arxiv.org/pdf/2006.10503

SE(3)-Transformer is a variant of the self-attention module for 3D point clouds and graphs, which is
equivariant under continuous 3D roto- translations
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SE(3)-Transformers

Attention mechanism

exp(q; k;)
E?’:l exp(q; k;)

In the case of self-attention the query, key, and value vectors are embeddings of the input features, so

Atn (q;, {k;},{v;}) = > ouvj, @i =
j=1

q:hQ(f)> k:hK(f)> V=hv(f),

where {ho, hy, hy} are, in the most general case, neural networks. The query q,is associated with a
point i in the input, which has a geometric location x.. Thus if we have n points, we have n possible
queries. For query q, we say that node i attends to all other nodes j/=i.

A key property of self-attention is permutation equivariance. Permutations of point labels 1, ..., n lead
to permutations of the self-attention output. This guarantees the attention output does not depend
arbitrarily on input point ordering.

The SE(3)-transtormer is a special case of this attention mechanism, inheriting permutation
equivariance. However, it limits the space of learnable functions to rotation and translation

equivariant ones.
https://arxiv.org/pdf/2006.10503
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Equivariance

let f:X—>Y beafunctionand ¢* and ¢* be transformationson X and Y

then f is said to be eqguivariant iff

fody = ¢gof

L

f f CNN l lCNN




SE(3)-Transformers
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SE(3)-Transformers

A learned per B “a. -equivariant
i I point features ! T

© ® S, :
i o i i o | T
o ] O g
i ® map i ® pool ’ ' i invariant

A) Each layer of the SE(3)-Transformer maps from a point cloud to a point cloud (or graph to graph)
while guaranteeing equivariance. For classification, this is followed by an invariant pooling layer and
an MLP. B) In each layer, for each node, attention is performed. Here, the red node attends to its
neighbours. Attention weights (indicated by line thickness) are invariant w.r.t. input rotation.
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RoseTTAFold 1D and 2D Tracks
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(A) MSA updates via self-attention on MSA features. The attention maps over residues are softly
tied. (B) Pair feature updates based on co-evolution signals derived from MSA features by taking
outer-products and weighted averages. (C) Pair feature refinement through axial attention. (D) MSA
feature updates based on attention maps derived from given pair features.
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RoseTTAFold 3D Track
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(E) Initial N, Cq, C coordinate generation using Graph Transformer architecture. (F) 3D coordinate refinements
with SE(3)-Transformer. degree 0 node features (scaler node features, called state features here) are used to
calculate attention maps for structure-based MSA. degree 1 node features (vector node features) encode the
positions of N and C atoms by including displacement vectors to the corresponding Cq atoms.(G) MSA feature

updates based on given 3D structures using masked attention maps.
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RoseTTAFold Architecture

1. Update pair features with coevolution signal derived from MSA features
2. Refine pair features via row and column-wise self-attention
3. Update MSA features based on structure information encoded in pair features

4. Initial 3D structure prediction using Graph Transformer-based architecture

Input is defined as a fully connected graph with nodes representing the residues in the protein. The node and edge embeddings
are learned from the averaged MSA features combined with a one-hot encoded query sequence and the pair features along with
sequence separation, respectively. The backbone coordinates are estimated using a stack of four Graph Transformer layers
followed by a simple linear transformation to predict Cartesian coordinates of N, Cq, C atoms for each residue node.

5. Structure updates through SE(3)-Transformer

6. Update MSA features based on a 3D structure

Similar to the MSA updates based on pair features in the 2-track model, MSA features are updated based on attention maps
derived from the current 3D structures. Four attention maps are calculated based on the state features, and they are masked based
on the Ca distances with four different cutoffs (8, 12, 16, and 20 A) so that it only attends to the neighbors in 3D space.

7. Residue pairwise distance and orientation prediction

8. Additional structure module for iterative refinement through the network

https://www.science.org/doi/10.1126/science.abj8754



RoseTTAFold Results

B CASP14 targets C CAMEDO targets
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(B) Average TM-score of prediction methods on the CASP14 targets. Zhang-server and BAKER-
ROSETTASERVER were the top two server groups, whereas AlphaFold2 and BAKER were the top two human
groups in CASP14; BAKER-ROSETTASERVER and BAKER predictions were based on trRosetta. Predictions
with the two-track model and RoseTTAFold (both end-to-end and pyRosetta version) were completely
automated. (C) Blind benchmark results on CAMEO medium and hard targets; model accuracies are TM-score
values from the CAMEO website (https://cameo3d.org/). In (B) and (C), the error bars represent a 95%
confidence interval.
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RoseTTAFold models provide insights into function
A

Deficiencies in TANGO2 (transport and Golgi organization protein 2) lead to metabolic disorders, and the protein plays an unknown role
in Golgi membrane redistribution into the endoplasmic reticulum. The RoseTTAFold model of TANGO2 adopts an N-terminal nucleophile
aminohydrolase (Ntn) fold (Fig. 3A) with well-aligned active-site residues that are conserved in TANGO?2 orthologs (Fig. 3B).

https://www.science.org/doi/10.1126/science.abj8754



Attention maps used to update M
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20

Last 2 blocks

20 40 60 80 100 120

Last 3 blocks

Fig. S12. Examples of attention maps used to update MSA. (A) True contact map of CASP14
target T1049. (B) Attention maps from self-attention on MSA features for the last three blocks of
the 2-track model (76M parameter model). Some of the attention heads (red boxes) resemble a
true contact map. Some cases (blue boxes) only attend to the positions not making the direct
contacts. (C) Attention maps derived from pair features used to update MSA features. It also
shows a similar pattern to the true contact map. The attention maps shown in this figure are
symmetrized for clear visualization.
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[terative refinement using SE(3)-Transtormers
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Fig. S15. An example (T1024-D1 from CASP14 targets) of Iterative refinement using SE(3)-
Transformers. (A) Model accuracy (TM-score) 1s improved with iterative refinement. Predicted
Co-IDDT from the network shows a good correlation to the actual model accuracy. (B) The
model structure at each iteration 1s shown. The RoseTTAFold models are colored in a rainbow
(blue; N-terminal, red; C-terminal), and the native structures are colored in gray.
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Discussions

AlphaFold 2 RoseTTAFold
Strengths: Strengths:

1. 1.

2 2

3 3

Weaknesses: Weaknesses:
1. 1.

2 2

3 3
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