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Introduction

The basics.




Introduction

The structure of a protein is important in determining its

function.

Many structure prediction methods use co-evolution
information.

Human designed proteins there is no evolutionary history.
Natural proteins have evolution to guide their folding.

Prediction the folded state of a protein without the need for GG{

coevolution data should be possible in principle.



Current landscape

o Current best performing systems:

o Alpha Fold 2
o RoseTTAFold
o trRosetta

o Written before
o OmegaFold
o ESMfold



AlphaFold 2 and trRosetta
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What do we want to do?

o The paper focuses on the impact of components in a ResNet
system.
o Theimpact of co-evolutionary data on a model's performance

IS important.
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Methods

How are we doing
what were doing?




System’s Design

Inter-residue orientations defined
in trRosetta are used

PyRosetta’s fast relaxation
protocol is used for the

generation of 3D structures
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Network Architecture

o Input features are
able to be turned on
and off easily.

e 100 2D convolutional
layers and, on
average, 150 filters

per layer.
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Model training

o The deep ResNet was trained with the following data:
o PDB25 was used in CASP13
o CATH S35 is used for their training and validation process
= March 2018 and 1 January 2020
= Not much difference was found in the different

versions after training



Coevolutionary data

o« CCMpred
o A performance-optimized MSA contact prediction
algorithm
o Metagenomic data
o Metagenomic data was taken from the MetaClust dataset



Ablation study of contact prediction

o Various models were trained using the CATH S35 data
o The model sizes and input features varied between models
o Co-evolution
o CCMpred
o Metagenomic data
o The contributions of different factors were determined by
comparing the resulting models' performance



1/0

e Input varies between models

o MSA data
o QOutput: a 2D distance map predicted by the model the 3D

representation is done by the use of pyRosetta.
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Results

How'd it go?
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Table 1| Precision and F1 of long-range contact prediction on the CASP13 targets by ResNet in different settings

Model  Network Input features 31 CASP13 FM targets 12 CASP13 FM/TBM targets
AL size Top L/5 Topl/2 TopL Topl/5 Topl/2 Topl
F1 of long-range contact prediction (%)
1 Large All 27.8 443 51.8 301 513 60.9
2 Large No co-evolution 19.3 30.6 347 247 391 47.0
3 Large No CCMpred 204 314 36.1 24.5 41.2 49.2
4 Large No metagenome 253 40.5 479 30.7 523 61.7
5 Small All 25.2 39.6 454 30.2 48.9 56.9
6 Small No full CCMpred 22.6 359 414 304 47.2 56.1
7 L60F150 All 26.5 41.2 47.6 29.7 48.7 58.5
8 L100F80 All 27.8 421 48.8 321 52.0 60.2
Precision of long-range contact prediction (%)

1 Large All 81.0 68.2 58.0 90.1 814 69.5
2 Large No co-evolution 58.2 47.8 391 76.2 65.0 54.7
3 Large No CCMpred 60.8 491 40.6 76.9 67.9 56.9
4 Large No metagenome 75.6 63.3 537 90.8 824 70.4
5 Small All 74.0 61.4 51.2 89.8 781 65.1
6 Small No full CCMpred 68.8 56.6 47.0 89.5 75.5 64.4
7 L60F150 All 783 64.0 535 88.3 779 66.9
8 L100F80 All 80.6 651 54.8 94.3 81.8 68.6



Casp13 FM, human designed, and contact prediction
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Impact of different settings

o Without co-evolution the model showed a decrease of 13% in
the F1 value

o« The model had a 4.6% decrease in the F1 when using the
smaller model

o Model depth is the main contributing factor not the width

o The metagenomic data had a 3.4% contribution
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Conclusion

What can we take
away?




Key points

o Co-evolutionary data is a large factor in structure prediction
o Thesize of the model and metagenomic data can boost
performance
o Predicting natural proteins without coevolutionary data
doesn't work well
o Human-designed proteins work well
o Probably due to low energy wells GG{

o Their method still needs some sequences to work



What can be Improved

The systems could be improved by working on the ResNet and
its training.

It has been shown that larger models provide better results
An improved architecture can help boost performance

The use of techniques like recycling could help improve the

results
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