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The basics.



Introduction
• The structure of a protein is important in determining its 

function.

• Many structure prediction methods use co-evolution 

information. 

• Human designed proteins there is no evolutionary history.

• Natural proteins have evolution to guide their folding.

• Prediction the folded state of a protein without the need for 

coevolution data should be possible in principle.



Current landscape
● Current best performing systems:

○ Alpha Fold 2

○ RoseTTAFold

○ trRosetta

● Written before 

○ OmegaFold

○ ESMfold



AlphaFold 2 and trRosetta

MSA information is used as part of the input for both AlphaFold 2 
and trRosetta



What do we want to do?
● The paper focuses on the impact of components in a ResNet 

system.

● The impact of co-evolutionary data on a model's performance 

is important.



Methods
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How are we doing 
what were doing?



System’s Design
● Inter-residue orientations defined 

in trRosetta are used

● PyRosetta’s fast relaxation 

protocol is used for the 

generation of 3D structures



Network Architecture
● Input features are 

able to be turned on 

and off easily.

● 100 2D convolutional 

layers and, on 

average, 150 filters 

per layer. 



Model training
● The deep ResNet was trained with the following data:

○ PDB25 was used in CASP13

○ CATH S35 is used for their training and validation process

■ March 2018 and 1 January 2020

■ Not much difference was found in the different 

versions after training



Coevolutionary data
● CCMpred

○ A performance-optimized MSA contact prediction 
algorithm

● Metagenomic data
○ Metagenomic data was taken from the MetaClust dataset



Ablation study of contact prediction
● Various models were trained using the CATH S35 data

○ The model sizes and input features varied between models
○ Co-evolution
○ CCMpred
○ Metagenomic data

● The contributions of different factors were determined by 
comparing the resulting models' performance



I/O
● Input varies between models

○ MSA data
● Output: a 2D distance map predicted by the model the 3D 

representation is done by the use of pyRosetta. 
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How'd it go?





Casp13 FM, human designed, and contact prediction



Impact of different settings

● Without co-evolution the model showed a decrease of 13% in 

the F1 value

● The model had a 4.6% decrease in the F1 when using the 

smaller model

● Model depth is the main contributing factor not the width

● The metagenomic data had a 3.4% contribution



Conclusion
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What can we take 
away?



Key points 
● Co-evolutionary data is a large factor in structure prediction

● The size of the model and metagenomic data can boost 

performance

● Predicting natural proteins without coevolutionary data 

doesn't work well

● Human-designed proteins work well

○ Probably due to low energy wells

● Their method still needs some sequences to work



What can be Improved
● The systems could be improved by working on the ResNet and 

its training.

● It has been shown that larger models provide better results

● An improved architecture can help boost performance

● The use of techniques like recycling could help improve the 

results
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