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Introduction

• Previous approaches for protein-nucleic acid complex prediction 
involve building models of protein and nucleic acid (NA) 
components separately and then use docking to combine
oPrediction of structure of complexes has lagged behind individual structures

• Goal: extend ideas of AF2 and RoseTTAFold to predict structure of 
nucleic acids and protein-nucleic acid complexes from sequence 
oDifficulty: Lack of data

• Train model with same data as RoseTTAFold2 augmented with RNA, 
protein-RNA, and protein-DNA complexes
oEvaluate on more recently published complexes without homologs



RoseTTAFold2 Architecture

Efficient and accurate prediction of protein structure using RoseTTAFold2
Baek et al. bioRxiv 2023.05.24.542179; doi: https://doi.org/10.1101/2023.05.24.542179



RoseTTAFold2 architecture details

• Each of the 3 tracks is initialized through a series of embedding 
layers from initial MSA and template features

• 36 rounds of the main iteration where 1D, 2D and 3D tracks talk to 
each other

• 4 rounds of 3D update with frozen 1D and 2D data
• 0-3 Recycling passes before backprop pass (like AF2):

• Directly for 3D
• Used to modify 1D and 2D embeddings

• 3D track is SE(3) Transformer with fully connected graphs



RoseTTAFold2 dataset and training
• All protein structures in the PDB published before April 30, 2020

• 280k structures in 20k clusters
• More permissive than RF

• ‘distilled’ protein structures
• High confidence AF2 predictions
• 3.6M sequence/structure pairs in 1.0M clusters

• Multimers dataset 
• Heteromeric interactions between different chains
• Homomeric interactions between 2 copies of same chain

• Training is run using a 50%/25%/25% split between distillation 
data, PDB monomers/homoligomers, and PDB heterooligomers

• MSAs are randomly masked



RoseTTAFold2 predictions

• Backbone and sidechain predictions made every iteration
• Made up of coordinates of backbone atoms and 10 total predicted angles
• Only fed forward indirectly through state features (3D track)

• Auxiliary Heads:
• Distogram and orientation from 2D track

• Binned prediction of distance and 3 angle terms (5 total angles) – like trRosetta
• Amino-acid logits from 1D track – used for masked AA prediction
• pLDDT – binned lddt per residue prediction – from state features
• pAE – error per residue – computed from pair features



RoseTTAFoldNA Architecture

The three-track architecture of RoseTTAFoldNA simultaneously updates sequence (1D), residue-pair (2D) and structural (3D) representations of 
protein–nucleic acid complexes. The areas in red highlight key changes necessary for the incorporation of nucleic acids: inputs to the 1D track 
include additional NA tokens, inputs to the 2D track represent template protein–NA and NA–NA distances (and orientations) and inputs to the 3D 
track represent template or recycled NA coordinates. Finally, the 3D track as well as the structure refinement module (upper right) can build all-atom 
nucleic acid models from a coordinate frame (representing the phosphate group) and a set of 10 torsion angles (six backbone, three ribose ring and 
one nucleoside). In this figure, dij are the template inter-residue distances, and SE(3) refers to the Special Euclidean Group in three dimensions.



Modifications from RoseTTAFold2 (RF2)
• Based on 3-track architecture of RoseTTAFold

oEach track extended to support nucleic acids
• 1D track:

oRF – 22 tokens (20 amino acids, 1 unknown or gap, 1 mask)
oRFNA - 10 tokens added – 4 DNA nucleotides, 4 RNA nucleotides, 1 unknown 

for each
• 2D track:

oRF – builds representation of interaction of all AA pairs
oRFNA – generalized to model interactions between nucleic acid bases and AAs

• 3D track:
oRF – represents position and orientation of each AA frame
oRFNA – Define frame for nucleotides (3 atoms and 10 torsion angles)



Data processing
• Protein and protein complex data used is the same as for RF2
• Added RNA and protein-nucleic acid complexes

o Include PDBs better than 4.5 Å resolution published before April 30, 2020
o All RNA single chains, all RNA duplexes, all interacting protein-nucleic acid pairs
o 7,396 (1632 clusters) RNA chains, 23,583 (1556 clusters) complexes – clustered and 

split into train and validation

• MSAs created for all protein and RNA sequences
• Added random nucleotide padding to DNA to improve generalizability – 580 

protein-DNA complexes
• Test set: PDBs published May 1, 2020 or later

• 91 complexes with one protein molecule plus a single RNA chain or DNA duplex

• 43 cases with a single RNA chain

• 106 cases with more than one protein chain or more than a single RNA chain or DNA duplex.



All atom nucleotide generation
• Represent each nucleotide as a rigid frame

• Orientation of phosphate group O-P-O (N–Cα–C for 
AA)

• Ten torsion angles: 6 backbone, 1 sidechain, three 
controlling ribose ‘pucker’ (ν0, ν1 and ν2)

• When all atom models are generated as part of 
the loss calculation, they are kinematically folded 
outward from the phosphate group following the 
chain of torsions connecting them.



Loss function

• seq is masked amino acid recovery loss
• 6D is 6 dimensional distogram loss
• str is structure loss

• average backbone FAPE loss over all 40 structure layers of the network plus 
the all-atom FAPE loss for the final model

• tors is the torsion prediction loss averaged over the 40 structure layers

• err is the loss in pLDDT prediction

• wseq = 3.0, w6d = 1.0, wstr = 10.0, wtors = 10.0 and werr = 0.1



Fine tuning loss

• LJ and hbond are Lennard-Jones and hydrogen bond energies of 
final structures

• geom enforces ideal bond lengths and bond angles
• pairerr is predicted residue-pair error
• wgeom = 0.1, wLJ = 0.02, whbond = 0.05 and wpairerr = 0.1



Model training
• 5 input pools sampled with equal probability:

• Protein structures, ‘distilled’ protein structures (from AF2), protein 
complexes, protein-NA complexes, and RNA structures

• For both pools containing ‘complexes,’ an equal number of positive 
and negative examples were used in training

• Sequences cropped to 256 residues
• Batch size of 64 with learning rate of 0.001, decaying every 5,000 steps

• The Adam optimizer was used, with L2 regularization (coeff = 0.01)

• After ∼1 × 105 optimization steps, fine-tuning training was carried out
• Crop size = 384, batch size = 128, lr = 5× 10−4, and 30,000 steps

• Took 4 weeks on 64 GPUs



Predicting 
protein-NA 
complexes

a–c, Summary of results on 32 protein–NA cluster representatives from the validation set and 84 protein–NA structures 
released since May 2020. d–g, Four examples of protein–NA complexes without homologs in the training set



Protein-
NA failure 
modes

Comparisons of representative predictions showing common failure modes of predictions in cases with no training-set homologs. Left is the 
deposited model, and right is the prediction. (A) Example where the individual subunits predict with poor accuracy, resulting in an incorrect overall 
(50% of errors). (B) Example where the subunits predict with reasonable accuracy and the relative orientation is correct but the details of the 
interface are wrong (20%). (C) Example where the subunits predict with high accuracy and the backbone-backbone binding mode is correct, but 
the interface is predicted at the wrong site on the DNA (10%). (D) Example where both subunits predict correctly but the relative orientation and 
interface are incorrect (20%). 



Multichain protein-NA complexes
a, Scatterplot of predicted 
model accuracy versus actual 
model accuracy for 161 
protein–NA complexes with 
multiple protein chains or 
multiple nucleic acid 
chains/duplexes. b–d,f, 
Examples of successful 
predictions without homologs 
in the training set, shown as the 
deposited model (left) and 
prediction (right). e,g, Example 
showing different predicted 
conformations of the same 
protein or DNA duplex alone 
(left) and with the other 
component (right), from the 
same complexes shown in d (e) 
and f (g).



RNA structure prediction

(a–c) Summary of results on 55 RNA cluster representatives from the validation set and 43 RNA structures released since May 
2020. Overall average lDDT is 0.64 (d–f) Four example predictions of RNA models with no detectable sequence homologs in the 
training set



RoseTTAFoldNA vs other methods for RNA

(e, f) Comparisons between RoseTTAFoldNA and other machine learning methods on the CASP15 RNA targets (using model 1 of 
each method). RFNA performs somewhat worse than DeepFoldRNA and significantly worse than AIchemy_RNA, the leading 
machine learning method from the competition.



RoseTTAFoldNA vs Hdock



Conclusion
• At outset, unclear if there was enough data for protein-NA 

structures
• Results show that it is sufficient for accurate prediction in roughly 31% of 

cases

• For RNA prediction, still perform worse than the state of the art on 
CASP15
• Most targets are large and several are synthetic with no MSAs

• Protein structure prediction – 0.87 TM-score vs 0.88 for AF2
• Strength of model is predicting protein-NA complexes

• Comparisons more difficult since no equivalent methods (pre AF3)
• Performs much better than traditional docking –> improvement on state 

of the art



Future directions they suggest

• Larger more expressive network may improve things
• They use 40 layer network with ~67M parameters
• AF2 is 93M parameters

• Use of high-confidence predicted structures
• Similar to ‘distilled’ dataset for proteins



Comparison with AF3

• RFNA represented a large improvement in protein-NA structure 
prediction but AF3 overshadows RFNA with more generalizable and 
accurate model published just 6 months later



Questions?
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