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Model accessibility
● We want protein prediction to be accessible

● High computational costs

○ MSA Generation is expensive

■ Takes a long time to generate

■ Takes a large amount of memory

○ Structure prediction is expensive

■ A high-end GPU with large RAM

■ MSA still consumes most of the time



Current State

● AlphaFold-Collab

● AlphaFold2

● RoseTTAFold



Proposed Idea
● CollabFold

○ Improve computational time

○ Lower memory requirements

○ Optimizations



Methods
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Design

CollabFold consists of 3 main parts

1: MSA Search Server

2: Python library

3: Jupyter Notebook



4 Main notebooks
● AlphaFold_mmseqs2

○ Basic use notebook

● AlphaFold_advanced

○ Advanced use, exposed AlphaFold Parameters

● AlphaFold_batch

○ Batch prediction

● RoseTTAFold

○ Use of RoseTTAFold



Databases

● AlphaFold2 requires 2TB of storage for 

databases

● Optimized the database

● Created another database



MMseqs2
● Protein database searching method

● 3 stages

○ Short word (k-mer) match

■ Crucial for performance

■ 2 consecutive similar-k-mer match

○ Vectorized ungapped alignment

○ Gapped (Smith-Waterman) alignment



BDF/MGnify
● Big Fantastic Database (BFD)

○ Clustered Protein database 2.2 B Proteins

○ 64 M clusters

● MGnify

○ 300 M environmental proteins

● Databases were merged with MMseqs2

○ MGnify sequences with a sequence identity of >30% and a local alignment that 

covers at least 90% of its length is assigned to the respective BFD cluster

○ Unassigned sequences are clustered at 30% sequence identity and 90% coverage

● 182 M clusters

● Filtered from 2.5 B (517 GB RAM) to 513M (84 GB RAM)



CollabFoldDB
● BFD/MGnify expanded with metagenomic data

○ SMAG, MetaEuk, TOPAZ, MGV, GPD, and MetaClus

○ Same method as BFD/MGnify merging

● Final database contains

○ 209,335,865 million representative sequences

○ 738,695,580 members



MSA Generation
● CollabFold sends the query to a MMseqs2 server

● Queries the UniRef30 database

○ Clustered version of UniRef100

● Realign the respective UniRef100 member

● Method expands out

○ Provides a 10-fold speed-up

● UniRef30 profile used on the BFD/MGnify or CollabFoldDB

○ Same expanding strategy



Diversity Aware Filtering
● The number of hits in the Final MSA is reduced by filtering
● Method is implemented in MMseqs2

○ Implemented in stages
● Clusters are filtered
● Enable only –qsc .8

○ Qsc only used if more than 1000 hits are found
● Filter with the following parameters: --filter-min-enable 1000 --diff 3000 --qid

0.0,0.2,0.4,0.6,0.8,1.0 --qsc 0 --max-seq-id 0.95
○ Filter keeps 3000 most diverse sequences in the identity buckets
○ Disabled in buckets with less than 1000 sequences



AlphaFold2 model optimizations

● Avoiding recompiling

● Exposing recycle count

● Early stop

● MSA seed iteration

● 2D structure renderer



Results
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CollabFold Performance



Mean per-model FM TM-scores
● CollabFold-AlphaFold2-BFD/MGnify

○ 0.826

● CollabFold-AlphaFold2-CollabFoldDB

○ 0.818

● AlphaFold2

○ 0.79

● AlphaFold-Collab

○ 0.744

● CollabFold-RoseTTAFold-BFD/MGnify

○ 0.62



My run with 6J1B

Total runtime: 20 min, Queue Time: 10 min



Conclusion
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Key Points
● Running a model is expensive

○ Memory cost

○ Time cost

○ GPU requirements

● Improved performance

○ MSA generation

○ Exposing functions

● Accessible

○ Google collab

○ Command line interface implementation



Future directions
● New models

● Custom databases

○ Custom MSA is possible

● Component modularity
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