ColabFold: making protein folding accessible to all

Mirdita et al. Luis Lazcano

Table of contents

Introduction

You can describe the topic of the section here

Methods

You can describe the topic of the section here

Results

You can describe the topic of the section here

Discussion

You can describe the topic of the section here

Future Directions

You can describe the topic of the section here

Conclusion

You can describe the topic of the section here

Introduction

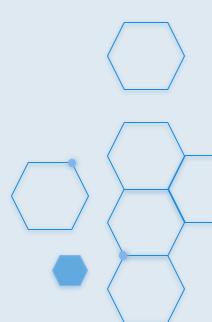
You can enter a subtitle here if you need it

Model accessibility

- We want protein prediction to be accessible
- High computational costs
 - MSA Generation is expensive
 - Takes a long time to generate
 - Takes a large amount of memory
 - Structure prediction is expensive
 - A high-end GPU with large RAM
 - MSA still consumes most of the time

Current State

- AlphaFold-Collab
- AlphaFold2
- RoseTTAFold



Proposed Idea

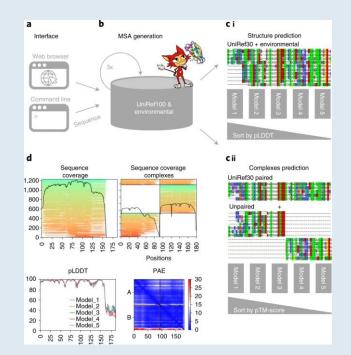
- CollabFold
 - Improve computational time
 - Lower memory requirements
 - \circ Optimizations

Methods

You can enter a subtitle here if you need it

Design

- CollabFold consists of 3 main parts 1: MSA Search Server
- 2: Python library
- 3: Jupyter Notebook

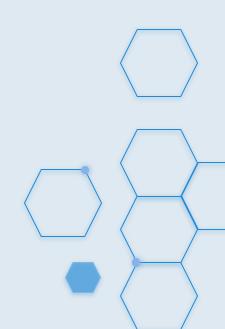


4 Main notebooks

- AlphaFold_mmseqs2
 - Basic use notebook
- AlphaFold_advanced
 - Advanced use, exposed AlphaFold Parameters
- AlphaFold_batch
 - Batch prediction
- RoseTTAFold
 - $\circ \quad {\sf Use \ of \ RoseTTAFold}$

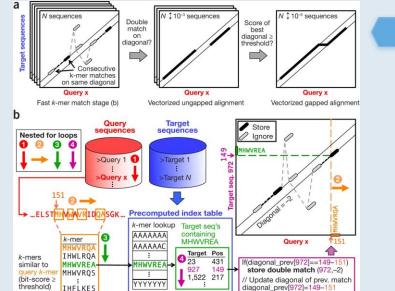
Databases

- AlphaFold2 requires 2TB of storage for databases
- Optimized the database
- Created another database



MMseqs2

- Protein database searching method
- 3 stages
 - Short word (k-mer) match
 - Crucial for performance
 - 2 consecutive similar-k-mer match
 - Vectorized ungapped alignment
 - Gapped (Smith-Waterman) alignment



BDF/MGnify

- Big Fantastic Database (BFD)
 - Clustered Protein database 2.2 B Proteins
 - 64 M clusters
- MGnify
 - o 300 M environmental proteins
- Databases were merged with MMseqs2
 - MGnify sequences with a sequence identity of >30% and a local alignment that covers at least 90% of its length is assigned to the respective BFD cluster
 - Unassigned sequences are clustered at 30% sequence identity and 90% coverage
- 182 M clusters
- Filtered from 2.5 B (517 GB RAM) to 513M (84 GB RAM)

CollabFoldDB

- BFD/MGnify expanded with metagenomic data
 - SMAG, MetaEuk, TOPAZ, MGV, GPD, and MetaClus
 - Same method as BFD/MGnify merging
- Final database contains
 - 209,335,865 million representative sequences
 - 738,695,580 members

MSA Generation

- CollabFold sends the query to a MMseqs2 server
- Queries the UniRef30 database
 - Clustered version of UniRef100
- Realign the respective UniRef100 member
- Method expands out
 - Provides a 10-fold speed-up
- UniRef30 profile used on the BFD/MGnify or CollabFoldDB
 - Same expanding strategy

Diversity Aware Filtering

- The number of hits in the Final MSA is reduced by filtering
- Method is implemented in MMseqs2
 - Implemented in stages
- Clusters are filtered
- Enable only –qsc .8
 - \circ Qsc only used if more than 1000 hits are found
- Filter with the following parameters: --filter-min-enable 1000 --diff 3000 --qid 0.0,0.2,0.4,0.6,0.8,1.0 --qsc 0 --max-seq-id 0.95
 - Filter keeps 3000 most diverse sequences in the identity buckets
 - Disabled in buckets with less than 1000 sequences

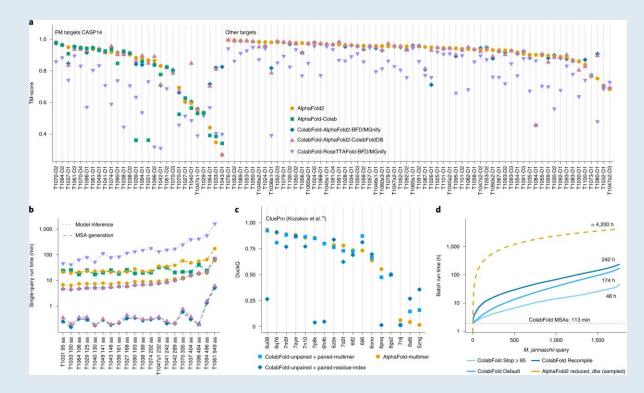
AlphaFold2 model optimizations

- Avoiding recompiling
- Exposing recycle count
- Early stop
- MSA seed iteration
- 2D structure renderer

Results

You can enter a subtitle here if you need it

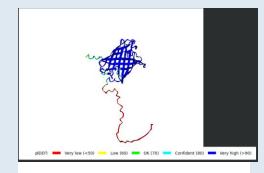
CollabFold Performance

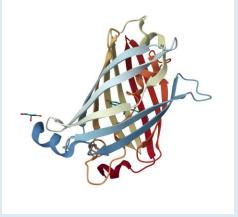


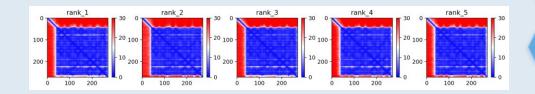
Mean per-model FM TM-scores

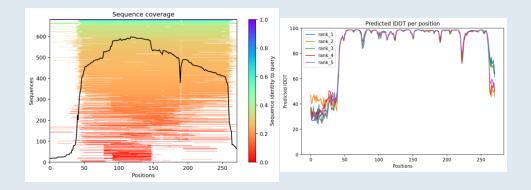
- CollabFold-AlphaFold2-BFD/MGnify
 - o **0.826**
- CollabFold-AlphaFold2-CollabFoldDB
 - o **0.818**
- AlphaFold2
 - o **0.79**
- AlphaFold-Collab
 - o **0.744**
- CollabFold-RoseTTAFold-BFD/MGnify
 - o 0.62

My run with 6J1B









Total runtime: 20 min, Queue Time: 10 min

Conclusion

You can enter a subtitle here if you need it

Key Points

- Running a model is expensive
 - $\circ \quad \text{Memory cost} \\$
 - $\circ \quad \mathsf{Time} \ \mathsf{cost}$
 - GPU requirements
- Improved performance
 - $\circ \quad \mathsf{MSA} \ \mathsf{generation}$
 - Exposing functions
- Accessible
 - Google collab
 - Command line interface implementation

Future directions

- New models
- Custom databases
 - Custom MSA is possible
- Component modularity

Works cited

Mirdita, M., Schütze, K., Moriwaki, Y. *et al.* ColabFold: making protein folding accessible to all. *Nat Methods* **19**, 679–682 (2022). <u>https://doi.org/10.1038/s41592-022-01488-1</u>

Steinegger, M., Söding, J. MMseqs2 enables sensitive protein sequence searching for the analysis of massive data sets. *Nat Biotechnol* **35**, 1026–1028 (2017). <u>https://doi.org/10.1038/nbt.3988</u>

Questions?

You did it you survived!

CREDITS: This presentation template was created by <u>Slidesgo</u>, and / includes icons by <u>Flaticon</u>, and infographics & images by <u>Freepik</u>

Please keep this slide for attribution

