

Fast and effective protein model refinement using deep graph neural networks

Xiaoyang Jing¹, Jinbo Xu^{1,*}

¹Toyota Technological Institute at Chicago, Chicago, IL 60637, USA

Presented by: Sumit Tarafder

Refinement

- One of the last steps in prediction pipeline.
- Improve the predicted model quality
- Challenging prospect
	- Space of worse models is larger than better models

R0974s1 (GDT-HA: 65.58→79.35)

SOTA methods

- Large-Scale Conformational Sampling
	- Molecular Dynamics (MD) Simulations
	- Fragment assembly
- Deep learning based methods

Conformational sampling methods

● FEIGLAB/ FEIG (Heo et al., 2019)

- Iterative MD simulations (flat bottom harmonic)
- BAKER (Part et al. 2019, Hiranuma et al., 2021)
	- Local error estimation, fragment assembly
	- Recombine 2D motifs, replace torsion angles
	- Deep learning, estogram
- GalaxyRefine (Lee et al., 2019)
	- MD simulation, side chain re-packing
- YASARA server
	- Template modeling, MD simulation, YASARA force field
- MUFOLD server
	- Distance distribution for all pair, potential function, maximize using L-BFGS

Deep learning methods

- DeepAccNet (Hiranuma et al., 2021)
	- 2D and 3D CNN, estimates error
- refineD (Bhattacharya et al., 2019)
	- DeepCNF
- DeepRefiner (Shuvo et al, 2021)
	- Bhattacharya Server (CASP13, CASP14)
- ATOMRefine (Wu et al., 2023)
	- All atom graph (SE (3) graph transformer)

GNNRefine

- Deep learning instead of physics based sampling
- Graph neural network based approach
- Predict inter-residue distance distribution
	- Limited conformational sampling. Faster
	- Convert the distribution into potentials
		- Relax using PyRosetta FastRelax

Architecture

- Atom embedding layer ○ 1
- Message passing layers
	- 10
- Output layer
	- 1

Architecture (2)

Atom embedder

Features

● Node and Edge features

- Sequential
- Structural

● Atom features

- One hot encoding of 4 atoms (C,N,O,S)
- Relative coordinates
	- \blacksquare x-x_a, y-y_a, z-z_a

Features (2)

Graph construction

- Edge definition (contact): C*^β* C*^β* euclidean distance <10 Å
- SE(3) Equivariant
- 3 inter-residue orientations
	- As defined in trRosetta
- Sequential separation of the two residues ($|i-j|$)
	- Discretized into 9 bins
		- \blacksquare [1, 2, 3, 4, 5, 6–10, 11–15, 16–20, >20]

Output layer

Softmax

- Get distance distribution from edge feat following trRosetta
- Output
	- \blacksquare Ex256 \rightarrow Ex37
- 37-dimensional vector
	- 36 bins representing the distances from 2 to 20 Å (0.5Å each)
	- \blacksquare 2 2.5 Å bin 0 2.5 - 3Å - bin 1..
	- 1 bin indicating the distance >20Å
- Loss function
	- Cross entropy loss (Ex37, actual bin/distance)

Building refined models

- Convert predicted probability distribution into distance potentials
	- SPLINE restraints
- Full atom relaxation, side-chain packing, energy optimization
	- PyRosetta, FastRelax (ref2015)
- Sequential inference; training likely stuck in local minima
	- 5 trained models on 5 different splits
	- GNNRefine 5 models
	- GNNRefinePlus 50 models
		- Rank by energy, reduce down to 5

GNNQA

- How to select the best refined model out of these 5 models?
- Developed their own QA methods
	- Based on updated node features
	- Targets labels are global lDDT metric

Training datasets

Evaluation metrics

- Global distance test
	- GDT-TS
	- GDT-HA
- Local distance difference test (lDDT)
	- \circ 15 Å radius
- Range 0-100, higher the better
- "Degradation"
	- The number of refined models with worse quality than their initial models by a given threshold (0, −1 and −2).
	- 0 denotes that a refined model has worse GDT-HA than its starting model
	- −1 and −2 denote that a refined model is worse than its starting model by at least 1 and 2 GDT-HA units, respectively.

Performance on the 28 CASP13 refinement targets

Performance on the 28 CASP13 refinement targets (2)

Performance on the 37 CASP14 refinement targets

Performance on the 37 CASP14 refinement targets (2)

Deep learning vs Human input

- GNNRefine doesn't use MSA and only use start model.
- FEIG-S uses template, BAKER uses MSA.
- For 14 targets FEIG used the other models of the same server generating the starting model assigned by CASP14.
- BAKER used inter-residue distance predicted by trRosetta4 from MSAs as an input feature of DeepAccNet.
- Model selection is manual.

Case study (ΔGDT-HA >=10)

R0974s1 (GDT-HA: 65.58->79.35)

R0976-D2 (GDT-HA: 64.31→76.61)

R0993s2 (GDT-HA: 50.00 -> 63.01)

R1082 (GDT-HA: 53.33→66.33)

Run time

- Run time to refine one structure
	- GNNRefine
		- 10 minutes 1 cpu
	- BAKER
		- 30 hours 60 cpus
	- FEIG
		- 16 GPU hours

CASP14 excluding AlphaFold2 targets

All start models **Excluding 7 AF2 start models**

Performance on 7 CASP14 AF2 refinement targets

Performance of standalone tools on CASP13

Feature ablation

Limitations or Future works

- Not an end-to-end refinement model
	- Energy minimization
- If model is poor→then graph is poor
	- Can't detect or recover edges
- Poor performance on AF2 models
	- Better training set with higher model quality
- No MSA
- Chemical context in atom embedding