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Introduction

• Understanding the structure of protein complexes is crucial for 
drug discovery and antibody design

• Experimental methods exist but are costly necessitating 
computational methods

• Traditionally done by docking which uses a scoring function (SF) to 
evaluate many possible conformations given the individual 
structure of each protein
• Limited by accuracy of scoring functions -> can be addressed by 

incorporating restraints derived from experimental methods



Docking with experimental constraints

• HADDOCK allows users to define active and passive residues in 
the complex which are converted into ambiguous interaction 
restraints

• ZDOCK utilizes contacting residues to filter docking conformations
• pyDOCK uses percentage of satisfied restraints as pseudo-energy 

term in SF
• ClusPro generates a feasible translation set for each restraint and 

selects translations with high frequency



Deep learning approaches

• AlphaFold2 (AF2), AlphaFold-Multimer (AF-Multimer), and 
RoseTTAFold2 (RF2)

• AF2 has learned approximate biophysical energy landscape and has 
state-of-the-art quality estimation

• AF2 has been used for protein design but predictions are inconsistent 
especially for flexible protein-protein interactions



ColabDock
• The motivation of ColabDock is to incorporate experimental restraints 

into deep learning models to avoid inconsistency between 
experiment and prediction

• Use gradient backpropagation to effectively integrate prior 
experimental restraints and the energy landscape of data-driven 
structure prediction models
• Search for conformations that satisfy both

• Two stages: 
• Generation stage – generate structure according to constraints while 

maximizing pLDDT and pAE
• Prediction stage – structure predicted on basis of generated structure and 

templates



ColabDock workflow



ColabDock workflow

• Use AF2 with 1 recycle as structure prediction model
• Trained on protein structures but not complex structures guaranteeing 

fairness in evaluation

• ColabDock performed multiple times for each complex
• Final conformations selected by ranking support vector machine (SVM) 

algorithm

• AF-Multimer or RoseTTAFold2 could also be used
• They also release ColabDock-Multimer with AF-Multimer



Restraints

• 1v1 restraints – distance of residue pair is below threshold
• Often derived from cross-linking mass spectrometry (XL-MS)

• MvN restraints - interface level
• Restraint between two sets of residues on surface that may be in contact
• Methods:

• NMR chemical shift perturbation (CSP)
• Covalent labeling (CL)
• Deep mutational scanning (DMS)



Synthetic Dataset
• Used for simulated restraints

• 271 protein complexes curated from protein docking benchmark 5.5
• Functions including enzyme-inhibitor, enzyme-substrate, antibody-antigen

• 241 after removing structures with resolution >3 Å

• Split into benchmark and evaluation sets

• Benchmark set – used to compare with HADDOCK and ClusPro
• Select complexes with < 1200 residues that AF-multimer performs poorly on

• 82 complexes - 45 are antibody-antigen complexes

• Evaluation set – used to tune hyperparameters and perform ablation
• Development set – random sample of 30 out of 157
• Validation set – 111 with length < 700 out of remaining 127
• Segment set – 29 with length > 600



Restraint sampling
• 1v1 restraints are sampled from clustered residues pairs in contact

• Collect all pairs where distance < 8 Å and cluster based on residue index distance

• Randomly sample from different clusters – 2, 3, or 5 pairs

• MvN restraints – derived from 1v1
• Expand each residue in restraints by incorporating 4 neighbors

• Merge residues sampled in same chain

• Loose restraints – proteins containing restraints with large distances
• Retrieve the inter-chain residue pairs with distances between 8 Å and 20 Å

• Generate 1v1 restraints using same procedure as above

• Antibody interface restraints – mimic DMS data of antibody-antigen
• Select residues in contact with other chain – sample 5-10



Experimental Datasets
• Used for experimental restraints
• CSP set – detect contact residues according to chemical shifts

• 2 proteins

• CL set – labels side chains of solvent accessible AA with reagents 
which can identify residues at interface
• 3 proteins – 1 with 3 biological assemblies



Generation stage backpropogation

• Distogram for each monomer – restraint loss for interaction
• Sequence profile is only thing trained 
• Learning rate = 0.1



Segment based optimization

• Backpropagation uses large amounts of GPU memory
• Set of residues is first cropped out of the sequence at the 

beginning of each step
• 50% probability the cropped residues contain restraints (all 4 loss terms)
• 50% randomly chosen with no restraints (no L_rest)
• Only profile of cropped residues are updated

• Crop 200 residues
• 100 optimization steps



Ranking algorithm

• Performance largely impacted by stochastic initialization and 
optimization
• Each protein is run multiple times (rounds)
• Structures from all rounds sorted by ranking algorithm

• Ranking algorithm built on basis of RankingSVM (RSVM)
• 5 features: ipTM, contact number, pLDDT, number of satisfied restraints, 

and average error

• One RSVM selects top 5 structures for each round
• Second RSVM ranks all selected structures
• Both trained on development set



Evaluation metrics

• Structure prediction
• DockQ – focus on quality of interface – 0 to 1, DockQ > 0.23 is correct

• Cα-r.m.s.d. – global structure

• Restraint satisfaction rate



Validation set 
performance
• Set of 111 complexes
• 37 samples for each level of 

restraints
• Prediction stage performs better 

on ~69% of complexes



Comparison with 
restrained docking 
methods 
• 37 complex benchmark set
• (a) top1 structures with 1v1
• (c) top1 structures with MvN
• ColabDock-Multimer 

outperforms AF-Multimer but is 
worse than ColabDock
• Simple explanation



CSP restraints
• CSP uses NMR to provide range of residues located at interface



CL restraints

• Labels side chain of 
residues with reagents
• residues with 

substantial 
modification more 
likely to be on interface

• Weaker than CSP 
restraints



Antibody-
antigen 
complexes
• Simulate DMS 

restraints for 
45 complexes 
in antibody-
antigen 
benchmark set

• (e) unbiased 
set of 8 
antibody-
antigen 
complexes



Other results



Conclusion

• ColabDock is able to effectively incorporate experimental 
restraints with deep learning methods to improve protein docking

• ColabDock-Multimer shows that transferability of framework
• Performs significantly better than AF-Multimer (unfair comparison)

• The more restraints it has, the better it performs
• Performs much better than other methods on synthetic and experimental 

restraints 



Future directions and limitations

• In the future ColabDock can be extended to other docking tasks
• Protein-ligand, protein-RNA/DNA

• Limitations:
• Only accept restraints with distance below 22 Å (AF2 distogram limit)

• Without segment-based optimization can only handle complexes less than 
1,200 residues on NVIDIA A100 GPU

• Method is very time consuming

• Published after AF3 but no comparisons at all



Questions?
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