Integrated structure prediction of protein– protein docking with experimental restraints using ColabDock

Feng et al. 2024

Luke Elder

11/7/24

Outline

- Introduction
- Methods
- Results
- Conclusions

Introduction

- Understanding the structure of protein complexes is crucial for drug discovery and antibody design
- Experimental methods exist but are costly necessitating computational methods
- Traditionally done by docking which uses a scoring function (SF) to evaluate many possible conformations given the individual structure of each protein
	- Limited by accuracy of scoring functions -> can be addressed by incorporating restraints derived from experimental methods

Docking with experimental constraints

- HADDOCK allows users to define active and passive residues in the complex which are converted into ambiguous interaction restraints
- ZDOCK utilizes contacting residues to filter docking conformations
- pyDOCK uses percentage of satisfied restraints as pseudo-energy term in SF
- ClusPro generates a feasible translation set for each restraint and selects translations with high frequency

Deep learning approaches

- AlphaFold2 (AF2), AlphaFold-Multimer (AF-Multimer), and RoseTTAFold2 (RF2)
- AF2 has learned approximate biophysical energy landscape and has state-of-the-art quality estimation
- AF2 has been used for protein design but predictions are inconsistent especially for flexible protein-protein interactions

ColabDock

- The motivation of ColabDock is to incorporate experimental restraints into deep learning models to avoid inconsistency between experiment and prediction
- Use gradient backpropagation to effectively integrate prior experimental restraints and the energy landscape of data-driven structure prediction models
	- Search for conformations that satisfy both
- Two stages:
	- Generation stage generate structure according to constraints while maximizing pLDDT and pAE
	- Prediction stage structure predicted on basis of generated structure and templates

ColabDock workflow

ColabDock workflow

- Use AF2 with 1 recycle as structure prediction model
	- Trained on protein structures but not complex structures guaranteeing fairness in evaluation
- ColabDock performed multiple times for each complex
	- Final conformations selected by ranking support vector machine (SVM) algorithm
- AF-Multimer or RoseTTAFold2 could also be used
	- They also release ColabDock-Multimer with AF-Multimer

Restraints

- 1v1 restraints distance of residue pair is below threshold
	- Often derived from cross-linking mass spectrometry (XL-MS)
- MyN restraints interface level
	- Restraint between two sets of residues on surface that may be in contact
	- Methods:
		- NMR chemical shift perturbation (CSP)
		- Covalent labeling (CL)
		- Deep mutational scanning (DMS)

Synthetic Dataset

- Used for simulated restraints
	- 271 protein complexes curated from protein docking benchmark 5.5
		- Functions including enzyme-inhibitor, enzyme-substrate, antibody-antigen
	- 241 after removing structures with resolution >3 Å
	- Split into benchmark and evaluation sets
- Benchmark set used to compare with HADDOCK and ClusPro
	- Select complexes with < 1200 residues that AF-multimer performs poorly on
	- 82 complexes 45 are antibody-antigen complexes
- Evaluation set used to tune hyperparameters and perform ablation
	- Development set random sample of 30 out of 157
	- Validation set 111 with length < 700 out of remaining 127
	- Segment set 29 with length > 600

Restraint sampling

- 1v1 restraints are sampled from clustered residues pairs in contact
	- Collect all pairs where distance < 8 Å and cluster based on residue index distance
	- Randomly sample from different clusters 2, 3, or 5 pairs
- MyN restraints derived from 1y1
	- Expand each residue in restraints by incorporating 4 neighbors
	- Merge residues sampled in same chain
- Loose restraints proteins containing restraints with large distances
	- Retrieve the inter-chain residue pairs with distances between 8 Å and 20 Å
	- Generate 1v1 restraints using same procedure as above
- Antibody interface restraints mimic DMS data of antibody-antigen
	- Select residues in contact with other chain sample 5-10

Experimental Datasets

- Used for experimental restraints
- CSP set detect contact residues according to chemical shifts • 2 proteins
- CL set labels side chains of solvent accessible AA with reagents which can identify residues at interface
	- 3 proteins 1 with 3 biological assemblies

Generation stage backpropogation $L_{\text{total}} = 1.5 \times L_{\text{dgram}} + 2 \times L_{\text{rest}} + 0.1 \times L_{\text{pLDDT}} + 0.1 \times L_{\text{ipAE}}.$

$$
L_{\text{dgram}} = -\sum_{\text{ichain}} \sum_{i, \, j} \sum_{b=1}^{64} y_{i, \, j,b}^{\text{ichain}} \, \log p_{i, \, j,b}^{\text{ichain}}, \hspace{10mm} L_{\text{rest}} = -\sum_{\text{irest}} \log \sum_{b:\text{dist}_b < \text{thres}} p_{\text{irest},b},
$$

$$
L_{\text{pLDDT}} = \sum_{i=1}^L \sum_{b=1}^{50} (\text{pLDDT}_{i,b} \times b)/(50 \times L) \hspace{2cm} L_{\text{ipAE}} = \sum_{i,\,j=1}^L \sum_{b=1}^{64} (\text{pAE}_{i,\,j} \times b)/\left(64 \times \sum_{i,\,j=1}^L \mathbb{J}\right)
$$

- Distogram for each monomer restraint loss for interaction
- Sequence profile is only thing trained
- Learning rate = 0.1

Segment based optimization

- Backpropagation uses large amounts of GPU memory
- Set of residues is first cropped out of the sequence at the beginning of each step
	- 50% probability the cropped residues contain restraints (all 4 loss terms)
	- 50% randomly chosen with no restraints (no L_rest)
	- Only profile of cropped residues are updated
- Crop 200 residues
- 100 optimization steps

Ranking algorithm

- Performance largely impacted by stochastic initialization and optimization
	- Each protein is run multiple times (rounds)
	- Structures from all rounds sorted by ranking algorithm
- Ranking algorithm built on basis of RankingSVM (RSVM)
	- 5 features: ipTM, contact number, pLDDT, number of satisfied restraints, and average error
- One RSVM selects top 5 structures for each round
- Second RSVM ranks all selected structures
- Both trained on development set

Evaluation metrics

- Structure prediction
	- DockQ focus on quality of interface 0 to 1, DockQ > 0.23 is correct $DockQ(F_{nat},LRMS, iRMS, d_1, d_2) = (F_{nat} + RMS_{scaled}(LRMS, d_1) + RMS_{scaled}(iRMS, d_2))/3$
	- Cα-r.m.s.d. global structure
- Restraint satisfaction rate

Validation set performance

- Set of 111 complexes
- 37 samples for each level of restraints
- Prediction stage performs better on ~69% of complexes

Comparison with restrained docking methods

- 37 complex benchmark set
- (a) top1 structures with 1v1
- (c) top1 structures with MvN
- ColabDock-Multimer outperforms AF-Multimer but is worse than ColabDock
	- Simple explanation

CSP restraints

• CSP uses NMR to provide range of residues located at interface

CL restraints

- Labels side chain of residues with reagents
	- residues with substantial modification more likely to be on interface
	- Weaker than CSP restraints

Antibodyantigen complexes

- Simulate DMS restraints for 45 complexes in antibodyantigen benchmark set
- (e) unbiased set of 8 antibodyantigen complexes

a

Conclusion

- ColabDock is able to effectively incorporate experimental restraints with deep learning methods to improve protein docking
- ColabDock-Multimer shows that transferability of framework
	- Performs significantly better than AF-Multimer (unfair comparison)
- The more restraints it has, the better it performs
	- Performs much better than other methods on synthetic and experimental restraints

Future directions and limitations

- In the future ColabDock can be extended to other docking tasks
	- Protein-ligand, protein-RNA/DNA
- Limitations:
	- Only accept restraints with distance below 22 Å (AF2 distogram limit)
	- Without segment-based optimization can only handle complexes less than 1,200 residues on NVIDIA A100 GPU
	- Method is very time consuming
- Published after AF3 but no comparisons at all

Questions?