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Introduction

* Understanding the structure of protein complexes is crucial for
drug discovery and antibody design

* Experimental methods exist but are costly necessitating
computational methods

* Traditionally done by docking which uses a scoring function (SF) to
evaluate many possible conformations given the individual
structure of each protein

* Limited by accuracy of scoring functions -> can be addressed by
incorporating restraints derived from experimental methods



Docking with experimental constraints

* HADDOCK allows users to define active and passive residues in
the complex which are converted into ambiguous interaction

restraints
* /ZDOCK utilizes contacting residues to filter docking conformations
* pyDOCK uses percentage of satisfied restraints as pseudo-energy
term in SF

* ClusPro generates a feasible translation set for each restraint and
selects translations with high frequency



Deep learning approaches

* AlphaFold2 (AF2), AlphaFold-Multimer (AF-Multimer), and
RoseTTAFold2 (RF2)

* AF2 has learned approximate biophysical energy landscape and has
state-of-the-art quality estimation

* AF2 has been used for protein design but predictions are inconsistent
especially for flexible protein-protein interactions



ColabDock

* The motivation of ColabDock is to incorporate experimental restraints
into deep learning models to avoid inconsistency between
experiment and prediction

* Use gradient backpropagation to effectively integrate prior
experimental restraints and the energy landscape of data-driven
structure prediction models

* Search for conformations that satisfy both

* Two stages:

* Generation stage — generate structure according to constraints while
maximizing pLDDT and pAE

* Prediction stage — structure predicted on basis of generated structure and
templates



ColabDock workflow
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ColabDock workflow

* Use AF2 with 1 recycle as structure prediction model
* Trained on protein structures but not complex structures guaranteeing
fairness in evaluation
* ColabDock performed multiple times for each complex

* Final conformations selected by ranking support vector machine (SVM)
algorithm

* AF-Multimer or RoselTAFold2 could also be used
* They also release ColabDock-Multimer with AF-Multimer



Restraints

* 1v1 restraints — distance of residue pair is below threshold
* Often derived from cross-linking mass spectrometry (XL-MS)

e MVN restraints - interface level

* Restraint between two sets of residues on surface that may be in contact

* Methods:
* NMR chemical shift perturbation (CSP)
 Covalent labeling (CL)
* Deep mutational scanning (DMS)



Synthetic Dataset

e Used for simulated restraints

» 271 protein complexes curated from protein docking benchmark 5.5
* Functions including enzyme-inhibitor, enzyme-substrate, antibody-antigen

* 241 after removing structures with resolution >3 A
e Split into benchmark and evaluation sets

* Benchmark set — used to compare with HADDOCK and ClusPro

* Select complexes with < 1200 residues that AF-multimer performs poorly on
* 82 complexes - 45 are antibody-antigen complexes

e Evaluation set — used to tune hyperparameters and perform ablation
* Development set—random sample of 30 out of 157
* Validation set— 111 with length <700 out of remaining 127
* Segment set - 29 with length > 600



Restraint sampling

* 1v1 restraints are sampled from clustered residues pairs in contact
* Collect all pairs where distance < 8 A and cluster based on residue index distance
 Randomly sample from different clusters — 2, 3, or 5 pairs

* MvN restraints — derived from 1v1
* Expand each residue in restraints by incorporating 4 neighbors
* Merge residues sampled in same chain

* Loose restraints — proteins containing restraints with large distances
* Retrieve the inter-chain residue pairs with distances between 8 A and 20 A
* Generate 1v1 restraints using same procedure as above

* Antibody interface restraints — mimic DMS data of antibody-antigen
e Select residues in contact with other chain —sample 5-10



Experimental Datasets

* Used for experimental restraints

* CSP set — detect contact residues according to chemical shifts
* 2 proteins
* CL set-labels side chains of solvent accessible AA with reagents

which can identify residues at interface
* 3 proteins — 1 with 3 biological assemblies



Generation stage backpropogation
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* Distogram for each monomer —restraint loss for interaction
* Sequence profile is only thing trained
* Learning rate =0.1



Segment based optimization

* Backpropagation uses large amounts of GPU memory

* Set of residues is first cropped out of the sequence at the
beginning of each step
* 50% probability the cropped residues contain restraints (all 4 loss terms)
* 50% randomly chosen with no restraints (no L_rest) S e
* Only profile of cropped residues are updated ——

* Crop 200 residues
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Ranking algorithm

* Performance largely impacted by stochastic initialization and
optimization
 Each protein is run multiple times (rounds)
e Structures from all rounds sorted by ranking algorithm

* Ranking algorithm built on basis of RankingSVM (RSVM)

* 5features: ipTM, contact number, pLDDT, number of satisfied restraints,
and average error

* One RSVM selects top 5 structures for each round
e Second RSVM ranks all selected structures

* Both trained on development set



Evaluation metrics

* Structure prediction

* DockQ —focus on quality of interface —=0to 1, DockQ > 0.23 is correct
DockQ(F o, LRMS, iRMS . dy, d3) = (Fpa + RMS,catea(LRMS, d1) + RMS,caiea(iRMS. d>)) /3
e Ca-r.m.s.d. —global structure

e Restraint satisfaction rate



Validation set
performance

* Setof 111 complexes

37 samples for each level of
restraints

* Prediction stage performs better
on ~69% of complexes
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CSP restraints

* CSP uses NMR to provide range of residues located at interface
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Other results
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Conclusion

* ColabDock is able to effectively incorporate experimental
restraints with deep learning methods to improve protein docking

* ColabDock-Multimer shows that transferability of framework
* Performs significantly better than AF-Multimer (unfair comparison)

* The more restraints it has, the better it performs

* Performs much better than other methods on synthetic and experimental
restraints



Future directions and limitations

* In the future ColabDock can be extended to other docking tasks
* Protein-ligand, protein-RNA/DNA

* Limitations:
 Only accept restraints with distance below 22 A (AF2 distogram limit)

* Without segment-based optimization can only handle complexes less than
1,200 residues on NVIDIA A100 GPU

* Method is very time consuming
* Published after AF3 but no comparisons at all



Questions?
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