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Landscape of structure prediction

e Advances in computational structure prediction
o  Deeplearning
o Co-evolutionary information (MSA)

e C(Caveats
o  Protein folds in the absence of sequence homologs
o Time and complexity of sequence search
o MSA, non natural

e Lack of efficiency
o Flexible region prediction such as loop or CDR regions
m  Weak presence of evolutionary information in these regions
o  Single point mutation effects



Complementarity-determining region (CDR)

V/ariable heavy domain

o Antibody (Ab) or immunoglobulin (Ig)

m  Responsible to bind to antigens /% CDR1
] 4 chains (2 heavy, 2 light)
n Constant structure in the framework region (Fr) ——CDR3
m  Large structure variability in the CDR regions
O CDR \ 2 / ¢
m  Highly variable regions in antibody R f\~ Variable light domain

m  Shape complements that of an antigen.
m  Classified using ANARCI tool

o CDR3

m  Highly variable among the three regions

L1

Light chain




Wild type vs missense mutation

o  Potential limitation of AF2 nature structural & molecular biology
[ ] Structure-disru ptive fO|d|ng Explore content v About the journal v Publish with us v
m  Trained one WT or homologus sequences

o Missense mutations
m  Frequently associate with human diseases and
single amino-acid mutations
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To the Editor — Understanding the impact that missense mutations have on protein structure
helps to reveal their biological effects. Although the structural prediction algorithm of
AlphaFold2 is able to predict wild-type (WT) structures to high accuracy, it seems to fall short
in predicting the impact of missense mutations on the three-dimensional (3D) structures of
proteins.



RaptorX-Single & RaptorX-Single-Ab

e RaptorX-Single

o MSA free method
m  Leverages multiple language model information
m  ESM-1b, ESM-1v, ProtTrans

o  Outperforms AlphaFold2 in
m  Orphan protein structure prediction
m  Single mutation effect prediction
m  Comparatively scalable

e RaptorX-Single-Ab
o  Focused on antibody structure prediction
m  Outperforms all other methods
o Incorporates fine-tuning



SOTA methods for single-sequence prediction

ESMFold
OmegaFold
trRosettaX-Single
HelixFold-Single
RGN

AlphaFold2 (Single)



Baseline methods in this work

ESMFold

OmegaFold
HelixFold-Single
AlphaFold2 (MSA)

o  Without templates
e AlphaFold2 (Single)

o No MSA, template



Antibody specific methods

e DeepAb
e IgFold
e EquiFold

o Solely depends on sequence for prediction



Architecture

e  Modified Evoformer
o  24layers
e  Structure module
o Linear layer to integrate
attention values
e |Initial pair embedding
o  Relative positional
encoding in the
pairwise embedding

Recycling

Protein language
models

(ESM-1b, ESM-1v,
ProtTrans)
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pLMs

e ESM-1b (~650 M parameters)

o UniRef50 - 27.1 million protein sequences
e ESM-1v

o Uniref90 with 98 million protein sequences
e ProtTrans (3 billion parameters)

o Newer UniRef50 of 45 million sequences



Training dataset

e The training data consist of ~340 k proteins.
o 80,852 proteins released before January 2020 in PDB
m  40% sequence identity clusters (BC100By40)
o  Theremaining 264 k proteins - predicted by AlphaFold2 (denoted as distillation data)
n Extracted from Uniclust30_2018_08
m < 30% sequence similarity
e FEachepoch
o  One protein is randomly sampled
m  From each cluster in BC100By40
m  From distillation data by the ratio of 1:3 between BC100By40 and the distillation data.



Benchmark datasets

e Three antibody datasets
o SAbDab-Ab (202 Ab)
o IgFold-Ab (67 Ab)
o Nanobody (60 Ab)
e One orphan protein dataset
o 11 proteins released between 01 January 2020, and 12 April 2022
o No homologs in BFD, MGnify, Uniref90 and Uniclust30
e Rocklin dataset: Single mutation effects dataset
o 14 native and de novo designed proteins and their stability measures of 10,674 single mutations.
o  The stability was evaluated using thermal and chemical denaturation.



Training

Training losses
o Pairwise loss (trRosetta)
m  Distogram loss
m  Distance loss
m  Orientation
o Structure loss
m  Frame Aligned Point Error loss with a clamp of 20 A
m  pLDDT loss.
e Recycling
o Randomly sampled from 0 to 3
150 epochs
RaptorX-Single (1b) - ESM-1b
RaptorX-Single (1v) - ESM-1v
RaptorX-Single (pt) - ProtTrans
RaptorX-Single (All 3)



Fine-tuning for antibody prediction

® An antibody training set for fine-tuning.

o Experimental structures from SAbDab (20) released before 2021/03/31
5,033 heavy and light chains.
o Validation set - 178 antibody structures

® All four models 50 epochs
RaptorX-Single-Ab (1b)
RaptorX-Single-Ab (1v)
RaptorX-Single-Ab (pt)
RaptorX-Single-Ab.

o O O O



Evaluation metrics

e For antibodies
o Backbone rmsd (Using PyRosetta)
[ ] Framework (Fr)
m  CDR(CDR-1, CDR-2, and CDR-3); Heavy and light chains separately
e For orphan targets
o  TM-score
o Global distance test-total score (GDT_TS)
o  Global distance test-high accuracy (GHT_HA)
e Single mutation effect prediction
o  Pearson correlation coefficient
m  Between the predicted structure changes and the stability data
m  Structure change = ATMscore



Average rmsd of on the IgFold-Ab dataset

e AF2 (MSA) not as good as
Ab-specific methods

e Difference in fine-tuning vs
trivial methods

rmsd (H) rmsd (L)

Fr CDR-1 CDR-2 CDR-3 Fr CDR-1 CDR-2 CDR-3
AlphaFold2 (MSA) 0.48 0.77 0.76 355 0.43 0.96 0.45 1.26
AlphaFold2 (Single) 10.84 15.34 15.48 16.33 8.98 13.54 16.13 15.14
HelixFold-Single 0.56 0.85 0.95 5.01 0.51 1.10 0.57 1.60
OmegaFold 0.47 0.75 0.74 3.70 0.41 0.93 0.43 1.35
ESMFold 0.51 0.84 0.91 4.10 0.43 1.16 0.52 1.44
DeepAb 0.43 0.80 0.74 3.28 0.38 0.86 0.45 1.11
IgFold 0.45 0.80 0.75 2.99 0.45 0.83 0.51 1.07
EquiFold 0.44 0.74 0.69 2.86 0.40 0.78 0.40 1.02
RaptorX-Single 0.51 0.86 0.90 4.33 0.46 1.13 0.54 1.95
RaptorX-Single-Ab 0.38 0.63 0.60 2.65 0.35 0.69 0.39 0.88

Note: The performance of EquiFold was reported by its author.



Average rmsd of predicted CDR-3 regions
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Performance comparison on antibody structure prediction
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The average rmsd on the SAbDab-Ab dataset

rmsd (H) rmsd (L)

Fr CDR-1 CDR-2 CDR-3 Fr CDR-1 CDR-2 CDR-3
AlphaFold2 (MSA) 0.63 1.08 0.89 3.82 0.59 0.89 0.69 1.39
AlphaFold2 (Single) 8.85 12.3 11.59 15.24 8.82 13.28 15.13 14.62
HelixFold-Single 0.71 1.15 1.1 55 0.66 1.1 0.79 1.84
OmegaFold 0.63 1.05 0.86 4.11 0.58 0.9 0.69 1.42
ESMFold 0.64 1.1 1.02 4.56 0.6 1.16 0.72 1.74
DeepAb 0.62 1.08 0.9 3.83 0.66 0.96 0.75 1.43
IgFold 0.66 1.15 0.95 3.65 0.65 0.96 0.8 1.4
EquiFold 0.6 1.05 0.89 3.37 0.57 0.87 0.72 1.31
RaptorX-Single 0.64 117 1.06 4.66 0.64 1.12 0.77 2.14
RaptorX-Single-Ab 0.57 1.01 0.82 3.24 0.53 0.79 0.66 1.24




The average rmsd on the Nanobody dataset

rmsd
e Nanobody is an increasingly Fr CDR1 CDR2 CDR-3
popular modality for AlphaFold2 (MSA) 0.73 2.05 118 4.01
therapeutic development. AlphaFold2 (Single) 9.34 1267 1239 17.87
Lacks a second Ig chain HelixFold-Single 0.86 1.99 1.18 4.2
e Increased CDR3 loop length, OmegaFold 071 2.02 1.12 3.77
o Challenging ESMFold 0.80 206 112 423
e EquiFold fails DeepAb 0.92 2,38 1.34 8.76
o Significance of pLMs IgFold 082 193 1.29 4.27
EquiFold 2.30 3.23 2.61 7.19
RaptorX-Single 0.83 219 1.14 4.06
RaptorX-Single-Ab 0.82 1.78 1.06 3.50




Average model quality on Orphan dataset

Method TMscore

GDT_TS GHT_HA
AlphaFold2 0.40 41.02 30.2
HelixFold-Single 0.42 44.19 30.95
OmegaFold 0.37 38.23 27.7
ESMFold 0.42 41.91 31.2
RaptorX-Single 0.43 43.4 32.14
7W5Z_T2

Why RaptorX-Single-Ab in figure?

Superior in loop and alpha-helix region
e  Neither MSA nor language model can

predict the fold

o Implicitly MSA dependent

= Native
AlphaFold2 (5.25 A)

= RX-Single-Ab (1.56 A)

7W5Z_T3

= Native
AlphaFold2 (9.39 A)

m RX-Single-Ab (4.85 A)



Mutational effect prediction

0.8
e RaptorX-single outperforms 07
on 9 out of 14 targets -
e AF2 (single) outperforms AF2 os
(MSA)
. o 04
o  Advantage of single-seq b
method in this type of 0.3
studies 0.2
0.0
& & & & & &
be‘w “"65/ ‘o‘g,/ ‘v‘gy . S\,/ &n,/ &7 ‘@/ Qgg\/ g\,z b'x_,/ &
7 7 & 4 / o o o Q\ Q\
& & & & K & &

= AlphaFold2-MSA © AlphaFold2-Single m RaptorX-Single (1b) m RaptorX-Single (1v) m RaptorX-Single (pt) ™ RaptorX-Single

Fig : The PCC between predicted structure change and stability change of all targets.



Performance on CASP14 dataset (60 targets)

e AlphaFold2 is the best

o Importance of MSA

e ESMFold outperforms other fhieore e GHi-i
single-seq methods AlphaFold2 0.874 84.46 7144
o Importance of pLMs ESMFold 0.728 69.02 56.60
e RaptorX-single (pt) is better —— 0679 470 335
tha n Other tWO p LM S. HelixFold-Single 0.608 55.66 41 .46
RaptorX-Single (1b) 0.611 5641 43.37
RaptorX-Single (1v) 0.557 51.24 39.26
RaptorX-Single (pt) 0.682 63.18 48.98
RaptorX-Single 0.675 62.52 48.84
RaptorX-Single (pLDDT)! 0.686 63.70 49.49

1. The model was selected by pLDDT from models predicted by RaptorX-Single (1b), RaptorX-Single (1v),
RaptorX-Single (pt) and RaptorX-Single.



Performance on CAMEQ dataset (194 targets)

TMscore GDT_TS GHT_HA
AlphaFold2 0876 85.63 74.03
ESMFold 0.848 81.87 70.32
OmegaFold 0.797 76.17 63.95
HelixFold-Single 0.786 74.07 60.04
RaptorX-Single (Ib) 0.786 73.80 59.88
RaptorX-Single (1v) 0.753 70.40 5721
RaptorX-Single (pt) 0.794 7491 61.32
RaptorX-Single 0.803 76.24 63.01
RaptorX-Single (pLDDT)* 0.805 76.43 63.10

1. The model was selected by pLDDT from models predicted by RaptorX-Single (1b), RaptorX-Single (1v),
RaptorX-Single (pt) and RaptorX-Single.



Effect of MSA depth on prediction quality

e Aresingle-seq methods implicitly making use
of homologs?
e Comparison of RaptorX-Single with AF2 (MSA)
o CASP14 and CAMEO [homolog rich]

o 99 targets more; no homolog in Uniclust30
e  AGDT-TS = RaptorX-Single - AF2

Observations:

e  Significantly underperforms for depth = 100-1000
Comparable for low and high depths
pLMs implicitly learn coevolution information of
large-sized protein
o Avg. length of >1e4 =411

AGDT_TS
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Limitations or Future works

Only outperforms Alphafold2 after fine-tuning

No comparison with other stability prediction methods
Did not include RGN despite mentioning in the paper
Choice of pLMs

Interconverting states in solution
o  Range of states with likelihood

Future works

o  VH-VL complex for antibody structure prediction

o No method can predict the fold of orphan proteins
m Implicit use of homologs through pLMs
m  Prediction directly from sequence



