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Alphafold2
Strength:

1. Best Accuracy (higher than
RF)

2. Recycling (Global)

3. End to end

Weakness:

1. TPU

2. Frames were not intuitive

IT’S DIFFICULT TO FIND AF2'S WEAKNESS!

RoseTTAFold

Strength:

1. Obtainable GPU

2. Equivariant transformer
3. Intuitive

Weaknesses:

1. Overengineered
2. 3D track necessary
3. Local Recycling



Outline

* Quick Review of AF2

* Strengths and weaknesses of the models
* What has and has not been achieved

* How this might evolve In the future



Review Alphatold?
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Different from Transformer blocks:
* each block in this model allows MSA and pair information to interact with each other
* Row-wise self-attention and column-wise self-attention



Row-wise gated self-attention (pair bias)
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Open Questions

* no radical new biological insights that were essential to the
method’s success

* \What makes AF2 so success?

* Does the interplay between two tracks important?
* Remove MSA track->AF2's performance(caspl4) drop slightly



2 Interpretations

* AlphaFold?2 is currently over-engineered
* simplify the model, remove the less important aspects and replacing
them with new, better ideas.
* AlphaFold? is just a collection of many individually small ideas

* a Formula 1 racing car. remove any little things, final performance drop
* Improvements: add little tricks



when benchmark AFZ

with and without homologs in PDB
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AF2’s confidence scores are
correlated with whether the
target structure has homologs in
PDB or not.

* the explicit use of templates
* Remove use
* AF2’s training set (All PDB data
before 2018/05)
* Better options, fold
classification databases like
CATH, SCOP and ECOD



Quality of AF2 models

* twO measures of confidence

* predicted local-distance difference test, pLDDT
* Reliability of pairwise interactions between different residues

* most AF2 models
* good side-chain placement and very low RMSD

* without clear homologs
* pLDDT scores are usually lower



a typical large human protein-MAP3K14

From EBI AlphaFold Database * D1 and D2: experimentally
determined

* D3 without any obvious
homologs in PDB

* domains are placed seemingly
arbitrarily

* long loops that project from
the structured core

* Obey the stereochemical rules
for polypeptides

Blue: greatest confidence
Orange: least confidence
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tests on AlphaFold?2

* a long sequence of alanine residues
* a single long a-helix predicted with high confidence,

* a similar sequence of iIsoleucine residues

* not a common feature in the training set
* the same high-confidence a-helix prediction



Challenges

* AF2 models do not include any ligands
* AlphaFold 3 (AF3) includes ligands, model protein-ligand interactions

* AF2 does not aim to elucidate the folding pathway, nor the
dynamics of the structure

* AF2 models cannot be explained or externally validated

* ‘asking’ why It predicted something in a particular conformation is not
feasible



New work inspired by AF?2

* Validate AF2 use various benchmark sets
* proper cross-validation, be careful
* some consider the regions that are not predicted with any accuracy

* AF2 application

* Inverse protein folding, or protein design



Use for?

* seed and solve the determination of experimental structures
* large complexes or even tomograms of whole cells

* docking and energy calculations

* Improve ablility to design proteins with new functions
* benefit of humankind



Thanks for Listening!
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