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Graph Convolutional
Policy Network (GCPN) for
Goal-Directed Molecular

Graph Generation
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The Problem

Drug discovery and material science are based on the
principles of designing molecular structures with
specific desired properties.

The space Is massive though (10723 - 10760 drug-like
molecules)

Chemical space is discrete and molecular properties
are highly sensitive to small changes in molecular
structure.
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Progress in Molecular Design

Molecule generation has been achieved via DL models

Achieving objectives of chemical and biological
properties has been difficult because these are highly
complex and non-differentiable goals.
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The Solution: Graph Convolutional Policy
Network

Combines 3 machine learning concepts:

Graph Representation: Used to obtain vector representaiton
of the state of generated graphs

Reinforcement Learning: Trains the model end-to-end

Adversarial Training: adversarial loss used as reward to

Incorporate prior knowledge specified by dataset of example
molecules
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Graph Representation

Benefits over SMILE representation

Partial Graphs can be seen as substructures, but partial text-
representations are not meaningful

If one character is changed in SMILE, it can change the entire
structure or invalidate fit.
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Graph Representation

The graphs are represented as (A,E,F)
A € {0, 1} — Adjacency Matrix
E € {0, 1}P*™n - Edge-conditioned adjacency tensor where
there are b possible edge types
Eij = 1if
there exists an edge of type | between nodes | and k

F € R™d — Node Feature matrix where each node has d
features
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Graph Generation:
State Space

|

* An intermediate graph
G, at time step t

* Initially starts as a
single node that
represents a carbon
atom




Graph Generation:
Action Space

|

Consists of a set of scaffold
subgraphs {C,, . .., C}

An action can either consist of
connecting a scaffold to the
current graph G, or connecting
nodes already within the
graph.

A scaffold generally has single
node representations of all the
possible atoms desired for a
molecule.
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Graph Generation:
State Transition
Dynamics

—I Sample 0 [NodelD Act
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EdgeType update
_ 0 |Stop
* This controls whether
an action can be
considered valid given a Samoie EESZ:E Act [ render
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Invalid state, that action (c)Action —a, ~ Ty p(GyslGoay)  (e) State— Gy,
IS rejected and the state
remains unchanged
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Graph Generation:
Reward

|

* Domain Specific rewards
 Final property scores

0.1 | Step reward
0 | Final reward

octanol-water partition

coefficient (lo PI)E'
druglikeness ?Q D)

* Unrealistic Molecule

| 0.1 | Step reward
Penalties

1 | Final reward

* Intermediate Rewards
- Step-wise validity rewards

« Adversarial rewards (via . B
Generative Adversarl(al (e) State — G,y (f) Reward —r,

Network)
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Graph
Convolutional
Policy Network:

Sa
Link Prediction =
Node embeddings are computed via
Graph Convolutional Networks using
information from each edge type over L
layers
Y Se
These are aggregated at the It" layer to } C
compute the next layer node
embedding.

Actions are then predicted by selection
of two nodes and prediction if there will
be an edge or termination

Multilayer Perceptrons (MLP) are used d—c (b) GCPN — my(a; |G, U C)

to achieve this
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Policy Gradient Training

Allows for optimization of policy networks

Specifically adopted Proximal Policy Optimization (PPO)

PPO computes an update at each step that minimizes the cost
function while ensuring the deviation from the previous policy is
relatively small

Network can be pretrained on known molecules

A sampling of a graph G and randomly selecting one of its
subgraphs G’ results in a state s,

An action a, can be defined as the addition of any atom or bond to
the G thus resulting in the pair (s, a,)
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Experiments: Evaluation Tasks

Three tasks were used for evaluation of GCPN against
state-of-the-art molecule generation algorithms

Property Optimization - Generate novel molecules whose
specified molecular properties are optimized

Property Targeting — Generate novel molecules whose
specified molecular properties |
are as close to the target scores as possible

Constrained Property Optimization - Generate novel
molecules whose specified

molecular properties are optimized, while also containing a
specified molecular substructure
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Experiments: Setup

Dataset: ZINC250K which contains 250,000 drug like
commercially available molecules

Molecule Environment: OpenAl Gym using RDKIit and adapted
to ZINC250k (Max atom # = 38, 9 atom types, 3 edge types)

Rewards

[-4, 4] for final chemical property reward

[-2, 2] for final
chemical filter reward

[-1, 1] for final adversarial reward
[-1, 1] for intermediate adversarial reward
[-1, 1] for intermediate validity reward
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Experiments: Baselines

Junction Tree VAE (JT-VAE) — Combines graph
representation and a VAE framework

ORGAN — RL-based molecule generation algorithm
using a text-based representation of molecules

W UNIVERSITY LIBRARIES



Results

Table 1: Comparison of the top 3 property scores of generated molecules found by each model.

Penalized logP QED

Method

Ist  2nd 3rd Validity Ist 2nd 3rd  Validity
ZINC 452 4.30 4.23 100.0% 0.948 0.948 0.948 100.0%
Hill Climbing  — — — — 0.838 0.814 0.814 100.0%
ORGAN 3.63 349 344 04% 0896 0.824 0.820 2.2%
JT-VAE 530 4.93 449 100.0% 0925 0911 0910 100.0%
GCPN 798 785 7.80 100.0% 0948 0947 0946 100.0%
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Results

Table 2: Comparison of the effectiveness of property targeting task. E
2.5 < logP < -2 o < logP < 5.5 150 < MW < 200

o000 < MW < 550

Method |
Success Diversity Success Diversity Success Diversity  Success  Diversity i
ZINC 0.3% 0.919 1.3% 0.909 1.7% 0.938 0 —
JT-VAE 11.3% 0.846 7.6% 0.907 0.7% 0.824 16.0% 0.898
ORGAN 0 — 0.2% 0.909 15.1% 0.759 0.1% 0.907
GCPN 85.5% 0.392 54.7% 0.855 76.1% 0.921 74.1% 0.920
The diversity of a set of molecules is defined as the average pairwise
Tanimoto distance between the Morgan fingerprints of the molecules
Table 3: Comparison of the performance in the constrained optimization task.
5 JT-VAE GCPN
Improvement Similarity Success Improvement Similarity Success
0.0 1.914+2.04 0.28 &= 0.15 97.5% 4.20+1.28 0.32+0.12 100.0%
0.2 1.68+1.85 0.33 +0.13 97.1% 4.12+1.19 034+0.11 100.0%
04 084+145 051+0.10 83.6% 249+1.30 0.47+0.08 100.0%
7777777777777777777777777777 06 0.214+0.71 0.69 &+ 0.06 46.4% 0.79+0.63 0.68+0.08 100.0%
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