Self-Supervised Graph Transformer on Large-Scale Molecular Data

Yu Rong, Yatao Bian, Tingyang Xu, Weiyang Xie, Ying Wei, Wenbing Huang, Junzhou Huang

Presented by

Monjura Afrin Rumi

Motivation

- Use of deep learning in drug discovery, molecule property prediction
- Issues in using deep learning
 - insufficient labeled data for molecular tasks
 - Time-consuming and resource-costly
 - poor generalization capability of models in the enormous chemical space
- Pre-train using unlabeled data in self-supervised manner

Motivation

- Representation of molecules
 - SMILES not topology aware
 - BERT
 - N-gram approach
 - Graph preserves rich structural information
 - Context prediction
 - node-level self-supervised learning
 - graph property prediction for graph-level pre-training

Ibuprofen CC(C)Cc1ccc(cc1)C(C)C(0)=0

Proposed Method

- GROVER: Graph Representation frOm self-superVised mEssage passing tRansformer
- node/edge-level tasks
 - masks a local subgraph of the target node/edge
 - predicts this contextual property from node embeddings
- graph-level tasks
 - Extracts the semantic motifs existing in molecular graphs
 - predicts the occurrence of these motifs for a molecule from graph embeddings.

GROVER Architecture: GTransformer

• Attention mechanism

Attention($\mathbf{Q}, \mathbf{K}, \mathbf{V}$) = softmax($\mathbf{Q}\mathbf{K}^{\top}/\sqrt{d}$) \mathbf{V}

• Multi-head attention

 $\begin{aligned} \text{MultiHead}(\mathbf{Q},\mathbf{K},\mathbf{V}) &= \text{Concat}(\text{head}_1,...,\text{head}_k)\mathbf{W}^O,\\ \text{head}_i &= \text{Attention}(\mathbf{Q}\mathbf{W}_i^{\mathbf{Q}},\mathbf{K}\mathbf{W}_i^{\mathbf{K}},\mathbf{V}\mathbf{W}_i^{\mathbf{V}}). \end{aligned}$

GROVER Architecture: dyMPN

- Graph Neural Network
 - Message passing/ neighborhood aggregation
 - Update hidden state

$$\begin{split} \mathbf{m}_{v}^{(l,k)} &= \mathsf{AGGREGATE}^{(l)}(\{(\mathbf{h}_{v}^{(l,k-1)}, \mathbf{h}_{u}^{(l,k-1)}, \mathbf{e}_{uv}) \mid u \in \mathcal{N}_{v}\}), \\ \mathbf{h}_{v}^{(l,k)} &= \sigma(\mathbf{W}^{(l)}\mathbf{m}_{v}^{(l,k)} + \mathbf{b}^{(l)}), \end{split}$$

- Randomized strategy for choosing KL
 - I. Uniform distribution $K_l \sim U(a, b)$
 - II. Truncated normal distribution $\phi(\mu, \sigma, a, b)$

Figure 1: Overview of GTransformer.

GROVER Architecture - continued

 $\mathbf{m}_{vw}^{\text{edge-embedding-from-edge-states}} = \sum_{u \in \mathcal{N}_v \setminus w} \bar{\mathbf{h}}_{uv}.$

- long-range residual connection
 - Vanishing gradient
 - Over-smoothing

Self-supervised Task Construction

Contextual Property Prediction

Self-supervised Task Construction

Graph-level Motif Prediction

- Motifs recurrent sub-graphs among the input graph data
- functional groups encodes the rich domain knowledge of molecules
- Motif extraction tool: RDKit
- Multi-label classification

Graph-level motif prediction

Related Work

Molecular Representation Learning

- chemical fingerprint: represent molecules in the vector space
 - encode the neighbors of atoms in the molecule into a fix-length vector ECFP
 - Neural fingerprints using convolutional layer TF_Roubust
- SMILES
 - RNN-based models to produce molecular representations
- Graph representation
 - Graph Convolutional Network GraphConv, Weave, SchNet
 - Graph Attention Network AttentiveFP
 - GNN MPNN, DMPNN
 - Hierarchical GNN MGCN

Related Work

• Self-supervised Learning on Graphs

- Learning objective vertex proximity relationship
- Vertex embedding N-gram model
- node/edge type prediction Hu et.al.

Experiments

- Pre-training
 - 11 million (M) unlabelled molecules 10% for validation
 - Context radious k =1, node = 2518, edge = 2686
 - Randomly mask 15% of node and edge labels for prediction
 - RDKit extract 85 functional groups as the motifs of molecules
 - GROVER_{base} ~48M parameters
 - GROVER_{large} ~100M parameters
- Fine-tuning tasks
 - train/validation/test 8:1:1
 - scaffold splitting

Table 5. Dataset information					
Туре	Category	Dataset	# Tasks	# Compounds	Metric
	Biophysics	BBBP	1	2039	ROC-AUC
		SIDER	27	1427	ROC-AUC
		ClinTox	2	1478	ROC-AUC
		BACE	1	1513	ROC-AUC
Classification	Physiology	Tox21	12	7831	ROC-AUC
		ToxCast	617	8575	ROC-AUC
		FreeSolv	1	642	RMSE
		ESOL	1	1128	RMSE
	Physical chemistry	Lipophilicity	1	4200	RMSE
Regression		QM7	1	6830	MAE
Regression	Quantum mechanics	QM8	12	21786	MAE

Table 3. Dataset information

Results

- 6.1% relative improvement
- 2.2% classification
- 10.8% regression

Classification (Higher is better)						
Dataset	BBBP	SIDER	ClinTox	BACE	Tox21	ToxCast
# Molecules	2039	1427	1478	1513	7831	8575
TF_Robust [40]	$0.860_{(0.087)}$	$0.607_{(0.033)}$	$0.765_{(0.085)}$	0.824(0.022)	$0.698_{(0.012)}$	0.585(0.031)
GraphConv [24]	$0.877_{(0.036)}$	$0.593_{(0.035)}$	$0.845_{(0.051)}$	$0.854_{(0.011)}$	$0.772_{(0.041)}$	0.650(0.025)
Weave [23]	$0.837_{(0.065)}$	$0.543_{(0.034)}$	$0.823_{(0.023)}$	$0.791_{(0.008)}$	$0.741_{(0.044)}$	$0.678_{(0.024)}$
SchNet [45]	$0.847_{(0.024)}$	$0.545_{(0.038)}$	$0.717_{(0.042)}$	$0.750_{(0.033)}$	$0.767_{(0.025)}$	0.679(0.021)
MPNN [13]	$0.913_{(0.041)}$	$0.595_{(0.030)}$	$0.879_{(0.054)}$	$0.815_{(0.044)}$	$0.808_{(0.024)}$	0.691(0.013)
DMPNN [63]	$0.919_{(0.030)}$	$0.632_{(0.023)}$	$0.897_{(0.040)}$	$0.852_{(0.053)}$	$0.826_{(0.023)}$	$0.718_{(0.011)}$
MGCN [30]	$0.850_{(0.064)}$	$0.552_{(0.018)}$	$0.634_{(0.042)}$	$0.734_{(0.030)}$	$0.707_{(0.016)}$	$0.663_{(0.009)}$
AttentiveFP [61]	$0.908_{(0.050)}$	$0.605_{(0.060)}$	$0.933_{(0.020)}$	$0.863_{(0.015)}$	$0.807_{(0.020)}$	$0.579_{(0.001)}$
N-GRAM [29]	$0.912_{(0.013)}$	$0.632_{(0.005)}$	$0.855_{(0.037)}$	$0.876_{(0.035)}$	$0.769_{(0.027)}$	-4
HU. et.al[18]	$0.915_{(0.040)}$	$0.614_{(0.006)}$	$0.762_{(0.058)}$	$0.851_{(0.027)}$	0.811(0.015)	$0.714_{(0.019)}$
GROVER _{base}	$0.936_{(0.008)}$	$0.656_{(0.006)}$	$0.925_{(0.013)}$	$0.878_{(0.016)}$	0.819(0.020)	0.723(0.010)
GROVER _{large}	$0.940_{(0.019)}$	$0.658_{(0.023)}$	$0.944_{(0.021)}$	$0.894_{(0.028)}$	$0.831_{(0.025)}$	$0.737_{(0.010)}$

Regression (Lower is better)						
Dataset	FreeSolv	ESOL	Lipo	QM7	QM8	
# Molecules	642	1128	4200	6830	21786	
TF_Robust [40]	$4.122_{(0.085)}$	$1.722_{(0.038)}$	0.909(0.060)	$120.6_{(9.6)}$	$0.024_{(0.001)}$	
GraphConv [24]	$2.900_{(0.135)}$	$1.068_{(0.050)}$	$0.712_{(0.049)}$	$118.9_{(20.2)}$	$0.021_{(0.001)}$	
Weave [23]	$2.398_{(0.250)}$	$1.158_{(0.055)}$	$0.813_{(0.042)}$	$94.7_{(2.7)}$	$0.022_{(0.001)}$	
SchNet [45]	$3.215_{(0.755)}$	$1.045_{(0.064)}$	$0.909_{(0.098)}$	$74.2_{(6.0)}$	$0.020_{(0.002)}$	
MPNN [13]	$2.185_{(0.952)}$	$1.167_{(0.430)}$	$0.672_{(0.051)}$	$113.0_{(17.2)}$	$0.015_{(0.002)}$	
DMPNN [63]	$2.177_{(0.914)}$	$0.980_{(0.258)}$	$0.653_{(0.046)}$	$105.8_{(13.2)}$	$0.0143_{(0.002)}$	
MGCN [30]	$3.349_{(0.097)}$	$1.266_{(0.147)}$	$1.113_{(0.041)}$	$77.6_{(4.7)}$	$0.022_{(0.002)}$	
AttentiveFP [61]	$2.030_{(0.420)}$	$0.853_{(0.060)}$	$0.650_{(0.030)}$	$126.7_{(4.0)}$	$0.0282_{(0.001)}$	
N-GRAM [29]	2.512(0.190)	$1.100_{(0.160)}$	0.876(0.033)	$125.6_{(1.5)}$	0.0320(0.003)	
GROVER _{base}	$1.592_{(0.072)}$	0.888(0.116)	$0.563_{(0.030)}$	$72.5_{(5.9)}$	0.0172(0.002)	
GROVER _{large}	$1.544_{(0.397)}$	$0.831_{(0.120)}$	$0.560_{(0.035)}$	$72.6_{(3.8)}$	$0.0125_{(0.002)}$	

Ablation study

- Pre-training
 - an average AUC increase of 3.8%
- GTransformer Backbone
 - GIN and MPNN
 - toy data set with 600K molecules
- Effect of dyMPN and GTransformer
 - GROVER w/o dyMPN
 - GROVER w/o GTrans

	GROVER	No Pretrain	Abs. Imp.
BBBP (2039)	0.940	0.911	+0.029
SIDER (1427)	0.658	0.624	+0.034
ClinTox (1478)	0.944	0.884	+0.060
BACE (1513)	0.894	0.858	+0.036
Tox21 (7831)	0.831	0.803	+0.028
ToxCast (8575)	0.737	0.721	+0.016
Average	0.834	0.803	+0.038

Epoch

100

Epoch

150

200

