Self-Supervised Graph Transformer on Large-Scale Molecular Data

Yu Rong, Yatao Bian, Tingyang Xu, Weiyang Xie, Ying Wei, Wenbing Huang, Junzhou Huang

Presented by
Monjura Afrin Rumi
Motivation

• Use of deep learning in drug discovery, molecule property prediction
• Issues in using deep learning
 • insufficient labeled data for molecular tasks
 • Time-consuming and resource-costly
 • poor generalization capability of models in the enormous chemical space
• Pre-train using unlabeled data in self-supervised manner
Motivation

• Representation of molecules
 • SMILES – not topology aware
 • BERT
 • N-gram approach
 • Graph – preserves rich structural information
 • Context prediction
 • node-level self-supervised learning
 • graph property prediction for graph-level pre-training
Proposed Method

• **GROVER**: Graph Representation from self-supervised Message passing Transformer

• node/edge-level tasks
 • masks a local subgraph of the target node/edge
 • predicts this contextual property from node embeddings

• graph-level tasks
 • Extracts the semantic motifs existing in molecular graphs
 • predicts the occurrence of these motifs for a molecule from graph embeddings.
GROVER Architecture: GTransformer

• Attention mechanism

$$
\text{Attention}(Q, K, V) = \text{softmax}(QK^T / \sqrt{d})V
$$

• Multi-head attention

$$
\text{MultiHead}(Q, K, V) = \text{Concat}(\text{head}_1, \ldots, \text{head}_k)W_Q^O,
\text{head}_i = \text{Attention}(QW^O_i, KW^K_i, VW^V_i)
$$
GROVER Architecture: dyMPN

• Graph Neural Network
 • Message passing/ neighborhood aggregation
 • Update hidden state

\[
\begin{align*}
 m_v^{(l,k)} &= \text{AGGREGATE}^{(l)}(\{(h_v^{(l,k-1)}), h_u^{(l,k-1)}, e_{uv} \mid u \in \mathcal{N}_v\}), \\
 h_v^{(l,k)} &= \sigma(W^{(l)} m_v^{(l,k)} + b^{(l)}),
\end{align*}
\]

• Randomized strategy for choosing KL
 I. Uniform distribution \(K_t \sim U(a, b) \)
 II. Truncated normal distribution \(\phi(\mu, \sigma, a, b) \)

Figure 1: Overview of GTransformer.
GROVER Architecture - continued

• Aggregate hidden states of nodes
 \[m_{\text{node-embedding-from-node-states}} = \sum_{u \in N_v} \bar{h}_u \]
 \[m_{\text{edge-embedding-from-node-states}} = \sum_{u \in N_v \setminus w} \bar{h}_u. \]

• Aggregate hidden states of edges
 \[m_{\text{node-embedding-from-edge-states}} = \sum_{u \in N_v} \bar{h}_{uv}, \]
 \[m_{\text{edge-embedding-from-edge-states}} = \sum_{u \in N_v \setminus w} \bar{h}_{uv}. \]

• long-range residual connection
 • Vanishing gradient
 • Over-smoothing
Self-supervised Task Construction

- Contextual Property Prediction
Self-supervised Task Construction

- **Graph-level Motif Prediction**
 - Motifs - recurrent sub-graphs among the input graph data
 - functional groups encodes the rich domain knowledge of molecules
 - Motif extraction tool: RDKit
 - Multi-label classification
Related Work

• **Molecular Representation Learning**
 • chemical fingerprint: represent molecules in the vector space
 • encode the neighbors of atoms in the molecule into a fix-length vector – ECFP
 • Neural fingerprints using convolutional layer - TF_Roubust
 • SMILES
 • RNN-based models to produce molecular representations
 • Graph representation
 • Graph Convolutional Network – GraphConv, Weave, SchNet
 • Graph Attention Network - AttentiveFP
 • GNN – MPNN, DMPNN
 • Hierarchical GNN - MGCN
Related Work

• **Self-supervised Learning on Graphs**
 • Learning objective – vertex proximity relationship
 • Vertex embedding - N-gram model
 • node/edge type prediction - Hu et.al.
Experiments

• Pre-training
 • 11 million (M) unlabelled molecules 10% for validation
 • Context radius k =1, node = 2518, edge = 2686
 • Randomly mask 15% of node and edge labels for prediction
 • RDKit - extract 85 functional groups as the motifs of molecules
 • GROVER_{base} - ~48M parameters
 • GROVER_{large} - ~100M parameters

• Fine-tuning tasks
 • train/validation/test - 8:1:1
 • scaffold splitting
Results

- 6.1% relative improvement
- 2.2% classification
- 10.8% regression
Ablation study

- Pre-training
 - an average AUC increase of 3.8%

- GTransformer Backbone
 - GIN and MPNN
 - toy data set with 600K molecules

- Effect of dyMPN and GTransformer
 - GROVER w/o dyMPN
 - GROVER w/o GTrans
Thank You