Neural Edit Operations for Biological Sequences Satoshi Koide, Keisuke Kawano, Takuro Kutsuna

Presented by Mohimenul Karim

Overview of The Work

- Two neural network architectures that can treat edit operations in biological sequences:
 - Edit invariant neural networks (EINN) based on differentiable Needleman-Wunsch algorithm
 - Deep CNNs with concatenations
- CNNs can recognize regular expressions without Kleene star
- Experiment on protein secondary structure prediction task

Needleman-Wunsch Algorithm

- Needleman-Wunsch algorithm:
 - Calculates similarity score between two sequences
 - Uses dynamic programming to maximize the score

Differentiable Sequence Alignment

- Needleman-Wunsch (NW) algorithm as a differentiable function
- Score function is defined as the inner product (line 7)
- Softmax function instead of using hard max function (line 10)

Algorithm 1: Differentiable Needleman-Wunsch (forward): $s_{NW}(x_{1:m}, y_{1:n}; g)$

// (m+2)x(n+2) zero matrix 1 $F \leftarrow 0$: 2 for $i = 0 \cdots m$ do $F_{i,0} \leftarrow -ig$ 4 for $j = 1 \cdots n$ do $F_{0,j} \leftarrow -jg;$ for $i = 1 \cdots m$ do 6 $a \leftarrow F_{i-1,j-1} + x_i \cdot y_j;$ 7 $b \leftarrow F_{i-1,j} - g;$ 8 $c \leftarrow F_{i,j-1} - g;$ 9 $F_{i,j} \leftarrow \max^{\gamma} (a, b, c)$ 10 11 return $F_{m,n}$ as $s_{NW}(x_{1:m}, y_{1:n}; g)$

Differentiable Sequence Alignment

Differentiate the NW similarity score $s_{NW}(x_{1:m}, y_{1:n}; g)$ with respect to $x_{1:m}, y_{1:n}$ and g (gap cost)

$$\begin{split} \frac{\partial s_{\text{NW}}}{\partial x_i} &= \sum_{j=1}^n Q_{i,j} \exp(H_{i,j}/\gamma) \cdot y_j, \quad \frac{\partial s_{\text{NW}}}{\partial y_j} = \sum_{i=1}^m Q_{i,j} \exp(H_{i,j}/\gamma) \cdot x_i, \\ \text{where} \quad H_{i,j} &:= F_{i-1,j-1} + x_i \cdot y_j - F_{i,j}. \end{split}$$

$$\frac{\partial s_{\rm NW}}{\partial g} = P_{m,n}.$$

Differentiable Sequence Alignment

Use dynamic programming to calculate the derivatives

Algorithm 2: Calculation of Q (backward). We denote $\varphi_{\gamma}(a, b) := \exp((a - b)/\gamma)$. $Q \leftarrow 0;$ // (m+2) x (n+2) zero matrix 2 for $i = 1 \cdots m$ do $F_{i,n+1} \leftarrow \infty$ 4 $F_{m+1,n+1} \leftarrow F_{m,n}; \quad Q_{m+1,n+1} \leftarrow 1;$ 5 for $j = n \cdots 1$ do $F_{m+1,i} \leftarrow \infty;$ for $i = m \cdots 1$ do 7 $| a \leftarrow \varphi_{\gamma}(F_{i,j} + x_i \cdot y_j, F_{i+1,j+1});$ 8 $b \leftarrow \varphi_{\gamma}(F_{i,j} - g, F_{i+1,j});$ 9 $c \leftarrow \varphi_{\gamma}(F_{i,j} - g, F_{i,j+1});$ 10 $Q_{i,j} \leftarrow aQ_{i+1,j+1} + bQ_{i+1,j} + cQ_{i,j+1}$ 11 12 return Q

Algorithm 3: Calculation of *P*. We denote $\varphi_{\gamma}(a,b) := \exp((a-b)/\gamma).$ $P \leftarrow 0;$ // (m+2) x (n+2) zero matrix 2 for $i = 0 \cdots m$ do $P_{i,0} \leftarrow -i$ 4 for $j = 1 \cdots n$ do 5 $P_{0,i} \leftarrow -j;$ for $i = 1 \cdots m$ do 6 $\begin{array}{c|c} \mathbf{7} \\ \mathbf{8} \end{array} \begin{array}{|} a \leftarrow \varphi_{\gamma}(F_{i-1,j-1} + x_i \cdot y_j, F_{i,j}); \\ b \leftarrow \varphi_{\gamma}(F_{i-1,j} - g, F_{i,j}); \end{array}$ $c \leftarrow \varphi_{\gamma}(F_{i,j-1} - g, F_{i,j});$ 9 $P_{i,j} \leftarrow$ 10 $P_{i,j} \leftarrow aP_{i-1,j-1} + b(P_{i-1,j}-1) + c(P_{i,j-1}-1)$ 11 return P

Edit Invariant Neural Networks (EINN)

- Extends the traditional CNNs by the NW score
- Let,
 - Convolutional filter of kernel size $K: w \in R^{dXK}$
 - A frame of length K at a certain position in the embedded sequence X: $x \in R^{dXK}$
- In CNNs the similarity score is calculated using the inner product w.x
- Replace the inner product with the proposed $s_{NW}(x, w; g)$
- A generalization of CNNs, because ${\rm s}_{\rm NW}$ converges to an inner product when $g\to\infty$ (Proposition 1)

Regular Expressions

- Unix-like notations of regular expressions
- Example:
 - /a.b/ represents "a, then any character and then b"
 - /a[bc]a/ represents "a, then b or c and then again a"
 - /(abc|ac)/ represents "abc or ac"
- Considered regular expressions without the Kleene star, R^{*} (R is a regular expression and R^{*} accepts infinite repeats of strings in R)
- Therefore, regular expressions like /ab*/ which represents "a followed by any number of b" are not considered

Simple Regular Expressions With CNNs

- x is a string of length L on an alphabet $\sum = \{a, b, c\}$
- Assumes one-hot representation for x
- Composed a 1d-convolutional layer with filter matrix w (one-hot representation) and bias b to match a regular expression
- Using a filter, the output of the layer at position i is 1, if the regular expression finds match in the string
- Use ReLU and obtain 1 for matching and 0 otherwise

Simple Regular Expressions With CNNs

 $w_1=(e_a, e_b, e_c)$ where e_a is the one-hot vector of character 'a' and $b_1=-2$ $w_2=(e_a, e_c, 0)$ and $b_2=-1$

Deeper CNNs for Complex Regular Expressions

If the shaded cell is 1, then we can detect deletion with the regular expression

Experiments

- Protein secondary structure prediction
- Dataset:
 - Test: CB513
 - Training: Filtered CB6133 (filtered, if proteins in the original CB6133 have 25% or higher similarity with the proteins in CB513)
- Predict the eight-class secondary structure labels for each position of a given sequence
- Feature vector at each position:
 - One-hot representation of amino acid
 - Position specific scoring matrix (PSSM)
- Zero-padding for constant sequence length

Experiments (Simplified Models)

- Tiny-CNN
- Tiny-EINN (replace Conv-5 layers with EINN convolutional layer)
- Training:
 - One-hot vector for input (did not use PSSM)
 - 2% of training data sampled from the filtered CB6133 dataset
- When the gap cost g is greater than 10, the accuracy is equal to that of CNN
- For g=2.5, the accuracy is maximum

Table 1: Test accuracy (CB513).

Method	Acc. (%)
Tiny-CNN	42.0
Tiny-EINN $(g = 2.5)$	<u>43.0</u>

Experiments (Simplified Models)

Figure 4: Gapcost g vs accuracy (Tiny-EINN). Tiny-EINN is nearly equivalent to Tiny-CNN for g > 10.

Experiments (Simplified Models)

 Used different sizes of training data (data size: 1%, 2% and 5%)

Figure 5: Effect of data size. The performance gain of EINNs increases as the data size decreases.

Experiments (Deeper Models)

- Stack two ConvBlocks
- At each position, a fully connected layer, batch normalization, dropout and ReLU are applied
- For investigating the effect of EINNs:
 - Replaced the convolutions (shaded in the figure) in the first ConvBlock with EINNs of the same filter and kernel size

(b) ConvBlock (inspired by [2])

Experiments (Deeper Models)

- Observation: Data augmentation improves accuracy
- Get training data by replacing the one-hot vector at random positions with an amino acid drawn from the uniform distribution
- Randomly replaced 15% of the residues
- Improved accuracy by up to 0.8 points

Effect of Depth

- Initially, the shallow stacking of the ConvBlocks
- Then deeper stacking (from 2 blocks to 16 blocks)
- Employed the multitasking technique and simultaneously predict the secondary structure and solvent accessibility
- 12-block CNN^{*+} achieved 71.5% CB513 accuracy (*: with multitasking; +: with data augmentation)

Effect of Network Architecture

- Replaced ConvBlock with the modified ConvBlock
- Replaced the ConvBlocks with the residual blocks

(c) Modified-ConvBlock

Comparison

Table 2: Comparison of precisions for the secondary structure prediction on CB513 dataset. Note that these results are for non-ensemble models. (*: with multitasking / †: with data augment.)

Method	Acc. (%)
Our 2-block CNN [†]	69.7
Our 2-block EINN [†]	<u>69.8</u>
Our 2-block CNN* [†]	69.8
Our 4-block CNN* [†]	70.6
Our 8-block CNN* [†]	71.2
Our 12-block CNN* [†]	71.5
Our 16-block CNN* [†]	71.3
Our 8-block MCNN* [†]	71.3
Our 12-block MCNN* [†]	71.5
ResNet* [†] (best result)	71.0
GSN [26] (2014)	66.4
DeepCNF [24] (2016)	68.3
DCRNN [13] (2016)	69.4
NextCond CNN [2] (2017)	70.3

Conclusion and Comment

- EINN consisting of differentiable NW algorithm
- EINN performs better than CNN
- Deep CNNs can recognize complex regular expressions
- Deep CNNs perform better than the state-of-the-art models
- Small increase in the accuracy against large computation in EINN