
Neural Edit 
Operations for 
Biological Sequences
Satoshi Koide, Keisuke Kawano, Takuro
Kutsuna

Presented by

Mohimenul Karim



Overview of The Work

• Two neural network architectures that can treat edit operations in biological sequences:

• Edit invariant neural networks (EINN) based on differentiable Needleman-Wunsch 
algorithm

• Deep CNNs with concatenations

• CNNs can recognize regular expressions without Kleene star

• Experiment on protein secondary structure prediction task



Needleman-
Wunsch Algorithm

• Needleman-Wunsch algorithm:

• Calculates similarity score 
between two sequences

• Uses dynamic programming to 
maximize the score



Differentiable 
Sequence Alignment

• Needleman-Wunsch (NW) algorithm 
as a differentiable function

• Score function is defined as the inner 
product (line 7)

• Softmax function instead of using hard 
max function (line 10)



Differentiable Sequence Alignment

Differentiate the NW similarity score sNW(x1:m, y1:n; g) with respect to x1:m, y1:n and g (gap cost)



Differentiable Sequence Alignment

Use dynamic programming to calculate the derivatives



Edit Invariant Neural Networks (EINN)

• Extends the traditional CNNs by the NW score

• Let,

• Convolutional filter of kernel size K: 𝑤 ∈ 𝑅𝑑𝑋𝐾

• A frame of length K at a certain position in the embedded sequence X: x ∈ 𝑅𝑑𝑋𝐾

• In CNNs the similarity score is calculated using the inner product 𝑤.𝑥

• Replace the inner product with the proposed sNW(x, w; g)

• A generalization of CNNs, because sNW converges to an inner product when 𝑔 → ∞
(Proposition 1)



Regular Expressions

• Unix-like notations of regular expressions

• Example:
• /a.b/ represents “a, then any character and then b”

• /a[bc]a/ represents “a, then b or c and then again a”

• /(abc|ac)/ represents “abc or ac”

• Considered regular expressions without the Kleene star, R* (R is a regular expression and 
R* accepts infinite repeats of strings in R)

• Therefore, regular expressions like /ab*/ which represents “a followed by any number of 
b” are not considered



Simple Regular Expressions With CNNs

• x is a string of length L on an alphabet σ = {𝑎, 𝑏, 𝑐}

• Assumes one-hot representation for x

• Composed a 1d-convolutional layer with filter matrix w (one-hot representation) and bias 
b to match a regular expression

• Using a filter, the output of the layer at position i is 1, if the regular expression finds 
match in the string

• Use ReLU and obtain 1 for matching and 0 otherwise



Simple Regular Expressions With CNNs

w1=(ea, eb, ec) where ea is the one-hot vector of character ‘a’ and b1=-2
w2=(ea, ec, 0) and b2=-1



Deeper CNNs for Complex Regular 
Expressions 

If the shaded cell is 1, 
then we can detect 
deletion with the 

regular expression



Experiments

• Protein secondary structure prediction

• Dataset:
• Test: CB513

• Training:Filtered CB6133 (filtered, if proteins in the original CB6133 have 25% or higher similarity with 
the proteins in CB513)

• Predict the eight-class secondary structure labels for each position of a given sequence

• Feature vector at each position:
• One-hot representation of amino acid

• Position specific scoring matrix (PSSM)

• Zero-padding for constant sequence length



Experiments (Simplified 
Models)

• Tiny-CNN

• Tiny-EINN (replace Conv-5 layers with EINN convolutional 
layer)

• Training:
• One-hot vector for input (did not use PSSM)
• 2% of training data sampled from the filtered 

CB6133 dataset

• When the gap cost g is greater than 10, the accuracy is
equal to that of CNN

• For g=2.5, the accuracy is maximum



Experiments 
(Simplified 
Models)



Experiments 
(Simplified 
Models)

• Used different sizes of 
training data (data size: 
1%, 2% and 5%)



Experiments 
(Deeper Models)

• Stack two ConvBlocks

• At each position, a fully connected 
layer, batch normalization, dropout 
and ReLU are applied

• For investigating the effect of EINNs:

• Replaced the convolutions 
(shaded in the figure) in the first 
ConvBlock with EINNs of the same 
filter and kernel size



Experiments (Deeper Models)

• Observation: Data augmentation improves accuracy

• Get training data by replacing the one-hot vector at random positions with an amino acid 
drawn from the uniform distribution

• Randomly replaced 15% of the residues

• Improved accuracy by up to 0.8 points



Effect of Depth

• Initially, the shallow stacking of the ConvBlocks

• Then deeper stacking (from 2 blocks to 16 blocks)

• Employed the multitasking technique and simultaneously predict the secondary 
structure and solvent accessibility

• 12-block CNN*† achieved 71.5% CB513 accuracy (*: with multitasking; †: with data 
augmentation)



Effect of Network 
Architecture

• Replaced ConvBlock with the modified 
ConvBlock

• Replaced the ConvBlocks with the 
residual blocks



Comparison



Conclusion and Comment

• EINN consisting of differentiable NW algorithm

• EINN performs better than CNN

• Deep CNNs can recognize complex regular expressions

• Deep CNNs perform better than the state-of-the-art models

• Small increase in the accuracy against large computation in EINN


