# ENERGY-BASED MODELS FOR ATOMIC-RESOLUTION PROTEIN CONFORMATIONS

Bowen Jing , Stephan Eismann , Patricia Suriana, Raphael J.L. Townshend, Ron O. Dror

**Stanford University** 

Presented by: Md Hossain Shuvo

Virginia Tech

# Background

### Protein conformation



## Energy-based models (EBMs)

$$p_{\theta}(x) = \exp(-E_{\theta}(x))/Z(\theta)$$
  
where  $Z = \int \exp(-E_{\theta}(x)) dx$ 

$$L_{\mathrm{ML}}(\theta) = \mathbb{E}_{x \sim p_D} [\log p_{\theta}(x)]$$
$$= \mathbb{E}_{x \sim p_D} [E_{\theta}(x) - \log Z(\theta)]$$

$$\nabla_{\theta} L_{\mathrm{ML}} \approx \mathbb{E}_{x^{+} \sim p_{D}} [\nabla_{\theta} E_{\theta}(x^{+})] - \mathbb{E}_{x^{-} \sim p_{\theta}} [\nabla_{\theta} E_{\theta}(x^{-})]$$





## Motivation

Protein folding



## Learning energy function

- ➤ Force field
- Statistical potentials
- ≻ Rosetta

Learn the energy function directly from data using generative modeling, EBMs

# Problem definition

Rotamer recovery

## Given:

set of surrounding atoms ,k (Context atoms) for a residue k = 64

## Train:

 $Y^* = \operatorname{argmin}_{Y \in \mathcal{Y}} E(Y, X).$ Sample from rotamer library Energy function:  $E_{\theta}(x, c) = f_{\theta}(A(x, c))$ Loss function :  $\mathcal{L}(\theta) = -E_{\theta}(x, c) - \log Z_{\theta}(c)$ 

# Contex

## **Predict:**

Rotamer atoms

# Problem setup

Atom input (context atoms) representations

- Cartesian coordinates (x,y,z)
- Categorical features: N/C/O/S
- > Ordinal label: type of N/C/O/S
- > Type of the amino acid



## Architecture



| Embed Each Atom to 256 Dim                                                 |
|----------------------------------------------------------------------------|
| Transformer Encoder Block (8 heads, feedforward dim 1024, 256 encoder dim) |
| Transformer Encoder Block (8 heads, feedforward dim 1024, 256 encoder dim) |
| Transformer Encoder Block (8 heads, feedforward dim 1024, 256 encoder dim) |
| Transformer Encoder Block (8 heads, feedforward dim 1024, 256 encoder dim) |
| Transformer Encoder Block (8 heads, feedforward dim 1024, 256 encoder dim) |
| Transformer Encoder Block (8 heads, feedforward dim 1024, 256 encoder dim) |
| Global Max Pooling                                                         |
| dense $\rightarrow 1$                                                      |

Figure A3: Atom Transformer Model (6 Transformer Encoder Blocks)

#### Additional parameters:

- No dropout used during the training
- Uses Layer normalization

## Baseline models

| Embed Each Atom to 256 Dim |
|----------------------------|
| Flatten                    |
| $Dense \rightarrow 1024$   |
| 1024  ightarrow 1024       |
| 1024  ightarrow 1024       |
| ResBlock down 256          |
| Global Mean Pooling        |
| Dense $\rightarrow 1$      |
| (a) Fully Connected Model  |

Embed Each Atom to 256 Dim

Dense  $\rightarrow 1024$ 

Repeat (6x):

LSTM 2048

Attention  $2048 \rightarrow 128 \rightarrow 1$ 

End Repeat

Dense  $\rightarrow 1024$ 

 $1024 \rightarrow 1$ 

(b) Set2Set Model (6 Permutation Invariant Blocks)

Embed Each Atom to 512 Dim Graph Attention Layer Global Average Pooling dense  $\rightarrow 1$ 

Graph network

## Datasets

High-resolution PDB structures from CullPDB database

- $\succ$  Resolution finer than 1.8Å
- Sequence identity < 90%</p>
- ➢ R-value < 0.25</p>
- > Total train proteins: 12,473
- > Total train proteins: 129
- > Sequence identity <= 25%

# Training steps

Algorithm 1 Training Procedure for the EBM

**Input:** Rotamer library q(x|c), Training set of proteins D **for** Protein  $d_i$  of D **do**   $\triangleright$  Sample random amino acid from  $d_i$   $R \sim d_i$   $\triangleright$  Set positive sample to 64 nearest neighbor atoms of carbon beta of R  $c^+ \leftarrow NN_{64}(R)$   $\triangleright$  Generate N negative samples from the rotamer library  $c^- \leftarrow q(x|c^+)$   $\triangleright$  Compute loss of model (logsumexp across all negative samples)  $L_{ml} = E(c^+; \theta) + \log \operatorname{sumexp}(-E(c^+; \theta), -E(c^-_0; \theta), -E(c^-_1; \theta), \dots, -E(c^-_N; \theta))$   $\triangleright$  Minimization step of  $L_{ml}$  using Adam optimizer  $\theta \leftarrow \theta - \nabla_{\theta} L_{ml}$ **end for** 



# **Evaluation metric**

- Percentage of rotamer recovery
- Successful rotamer recovery:

sampled\_chi – true\_chi < 20Å

- > Sampling strategies:
  - Discrete sampling
  - Continuous sampling

## Benchmark

#### Discrete sampling

| Model                            | Avg         | Buried | Surface |
|----------------------------------|-------------|--------|---------|
| Rosetta score12 (rotamer-trials) | 72.2 (72.6) | -      | -       |
| Rosetta ref2015 (rotamer-trials) | 73.6        | -      | -       |
| Atom Transformer                 | 70.4        | 87.0   | 58.3    |
| Atom Transformer (ensemble)      | 71.5        | 89.2   | 59.9    |

#### Continuous sampling

| Model                       | Avg         | Buried | Surface |
|-----------------------------|-------------|--------|---------|
| Fully-connected             | 39.1        | 54.4   | 30.0    |
| Set2set                     | 43.2        | 60.3   | 31.7    |
| GraphNet                    | 69.0        | 94.3   | 54.2    |
| Atom Transformer            | 73.1        | 91.1   | 58.3    |
| Atom Transformer (ensemble) | 74.1        | 91.2   | 59.5    |
| Rosetta score12 (rt-min)    | 75.4 (74.2) | -      | -       |
| Rosetta ref2015 (rt-min)    | 76.4        | -      | -       |

#### Rotamer recovery by amino acid

| Amino Acid                          | R            | Κ            | Μ            | Ι            | L            | S            | Т            | V            |
|-------------------------------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|
| Atom Transformer<br>Rosetta score12 | 37.2<br>26.7 | 31.7<br>31.7 | 53.0<br>49.6 | 93.3<br>85.4 | 82.6<br>87.5 | 79.0<br>72.5 | 96.5<br>92.6 | 94.0<br>94.3 |
| Amino Acid                          | N            | D            | Q            | Е            | Н            | W            | F            | Y            |
|                                     |              |              |              |              |              |              |              |              |

# Energy visualization



# Summary and observations

- > Learns energy function directly from the data using EBMs
- Discovers relevant features automatically
- Performance
- Evaluating methods