A 3D Generative Model for Structure-Based Drug Design

Shitong Luo, Jianzhu Ma, Jiaqi Guan, Jian Peng University of Illinois Urbana-Champaign 2021

Problem

- The existing models are mostly **string-based or graph-base**, they are limited by the **lack of spatial information**.
- Authors propose a 3D generative model that generates molecules given a designated 3D protein binding site by estimating the probability density of atom's occurrences in 3D space

Methods

- <u>Step 1</u>: present a 3D generative model that predicts the probability of atom occurrence in 3D space of the binding site.
- <u>Step 2</u>: the auto-regressive sampling algorithm for generating valid and multi-modal molecules from the model.
- <u>Step 3</u>: derive the training objective, by which the model learns to predict where should be placed and atoms and what type of atom should be placed.

Step 1: 3D Generative Model Design

set of atoms $C = \{(a_i, r_i)\}_{i=1}^{N_b}$, $e \in \mathcal{E} = \{H, C, O, ...\}$ probability of atom occurring at some position r in the site. p(e|r, C)

- Context Encoder learns the representation of each atom in the context C via graph neural networks
- Spatial Classifier takes as input a query position r, then aggregates the representation of contextual atoms nearby it, and finally predicts $p(e|r,C) = \frac{\exp(c[e])}{1 + \sum_{c' \in C} \exp(c[e'])}$,

Step 2: Sampling

Sampling a molecule amounts to generating a set of atoms $\{(e_i, r_i)\}_{i=1}^{N_a}$

Joint Distribution We define the joint distribution of coordinate r and atom type e

$$p(e, \boldsymbol{r} | \mathcal{C}) = \frac{\exp\left(\boldsymbol{c}[e]\right)}{Z},$$

Auto-Regressive Sampling We sample a molecule by progressively sampling one atom at each step. In specific, at step t, the context C_t contains not only protein atoms but also t atoms sampled beforehand. Sampled atoms in C_t are treated equally as protein atoms in the model, but they have different attributes in order to differentiate themselves from protein atoms. Then, the (t + 1)-th atom will be sampled from $p(e, r | C_t)$ and will be added to C_t , leading to the context for next step C_{t+1} .

$$(e_{t+1}, \boldsymbol{r}_{t+1}) \sim p(e, \boldsymbol{r} | \mathcal{C}_t),$$

$$\mathcal{C}_{t+1} \leftarrow \mathcal{C}_t \cup \{(e_{t+1}, \boldsymbol{r}_{t+1})\}.$$
(7)

Step 3: Training

$$\begin{split} L_{\text{BCE}} &= -\mathbb{E}_{\boldsymbol{r} \sim p_{+}} \left[\log \left(1 - p(\text{Nothing} | \boldsymbol{r}, \mathcal{C}) \right) \right] - \mathbb{E}_{\boldsymbol{r} \sim p_{-}} \left[\log p(\text{Nothing} | \boldsymbol{r}, \mathcal{C}) \right]. \\ L_{\text{CAT}} &= -\mathbb{E}_{(e, \boldsymbol{r}) \sim p_{+}} \left[\log p(e | \boldsymbol{r}, \mathcal{C}) \right]. \\ L_{\text{F}} &= \sum_{i \in \mathcal{F} \subseteq \mathcal{C}} \log \sigma(F(\boldsymbol{h}_{i})) + \sum_{i \notin \mathcal{F} \subseteq \mathcal{C}} \log(1 - \sigma(F(\boldsymbol{h}_{i}))), \end{split}$$

 $L = L_{\rm BCE} + L_{\rm CAT} + L_{\rm F}.$

Molecule Design Data:

- CrossDocked: 184,057 docked protein-ligand pairs.
- mmseqs2 to cluster data at 30% sequence identity,
 =>100,000 protein-ligand pairs for training and 100 proteins
 from remaining clusters for testing

Metric:

- Quality of generated molecules
 - Binding affinity measures how well the generated molecules fit the binding site. (VinaScore)
 - **Drug likeness** reflects how much a molecule is like a drug. (QED score)
 - Synthesizability assesses the ease of synthesis of generated molecules. (SA score)
- Generation quality and diversity:
 - Percentage of Samples with High Affinity, which measures the percentage of a binding site's generated molecules whose binding affinity is higher than or equal to the reference ligand.
 - **Diversity** measures the diversity of generated molecules for a binding site.

Evaluation:

Metric		liGAN	Ours	Ref
Vina Score	Avg.	-6.144	-6.344	-7.158
(kcal/mol, ↓)	Med.	-6.100	-6.200	-6.950
QED (†)	Avg.	0.371	0.525	0.484
	Med.	0.369	0.519	0.469
SA (†)	Avg.	0.591	0.657	0.733
	Med.	0.570	0.650	0.745
High Affinity	Avg.	23.77	29.09	
(%, ↑)	Med.	11.00	18.50	
Diversity (†)	Avg. Med.	0.655 0.676	0.720 0.736	-

Figure 3: Distributions of Vina, QED, and SA scores over all the generated molecules.

Linker prediction

- Data: 120 data points in total. Each of them consists of two disconnected molecule fragments
- Model is compared with DeLinker
- Metrics:
 - Similarity: Tanimoto Similarity over Morgan fingerprints
 - Percentage of recovered molecules: We calculate the percentage

of test molecules that are recovered by the model

• Binding Affinity: VinaScore

_	Metric		DeLinker	Ours
-	Similarity (†)	Avg. Med.	0.612 0.600	0.701 0.722
-	Recovered (9	‰, ↑)	40.00	48.33
ete	Vina Score (kcal/mol, \downarrow)	Avg. Med.	-8.512 -8.576	-8.603 -8.575

 Table 2: Performance of linker prediction.

