#### **Evaluating Protein Transfer Learning with TAPE**

Roshan Rao\* UC Berkeley roshan\_rao@berkeley.edu Nicholas Bhattacharya\* UC Berkeley nick\_bhat@berkeley.edu Neil Thomas\* UC Berkeley nthomas@berkeley.edu

Yan Duan covariant.ai rocky@covariant.ai Xi Chen covariant.ai peter@covariant.ai

John Canny UC Berkeley canny@berkeley.edu Pieter Abbeel UC Berkeley pabbeel@berkeley.edu Yun S. Song UC Berkeley yss@berkeley.edu

#### Presented by: Rahmatullah Roche



- Database of protein sequence growing exponentially
- Total number of sequence doubling each year
- Unlabeled sequence contains significant evolutionary information
- Can NLP extract the information?

- Self supervised learning from unlabeled dataset
- Task assessing protein embedding (TAPE)
- Systematically evaluated semi-supervised learning on protein sequences
- 5 biologically relevant supervised task
- Hypothesis: multiple tasks are required to accurately benchmark any method
- Performance assessment of
  - Recurrent-based model
  - Convolution-based model
  - Attention-based model
  - Semi-supervised models

# Background

- Protein terminology
  - (x1, x2, x3, ...., xL) fixed alphabet for amino acids
- Protein sequence alignments
  - Query  $\rightarrow$  Database  $\rightarrow$  Alignment
- Semi-supervised learning
  - Leverage information from both labeled and unlabeled data

- Kernel-based pretraining for homology detection
- NLP-based techniques for transfer learning
- VAE to predict functional impact in mutations
- Transfer learning in protein ss and contact prediction
- Not rigorously benchmarked to assess the comparisons

- Unlabeled sequence dataset
  - Pfam database of 31M protein domains
  - Training and test dataset split: 95%/5%
- Supervised datasets
  - Five biologically relevant downstream tasks
  - Dataset ranges in size 8k-50k for training

## Tasks

- Self-supervised:
  - Next token prediction
  - Mask token prediction
- Downstream tasks:
  - Protein SS
  - Protein contact map
  - Protein homology detection
  - Fluorescence
  - Stability

#### Tasks

Figure 1:



Figure 2:



- Two self-supervised losses for NLP task
  - Next-token prediction
  - Masked-token prediction
- Protein specific loss
  - Further supervised pretraining of models
  - Supervised pretraining on contact prediction and remote homology detection can improve secondary structure prediction (Beplar et al)

### Architectures for Downstream tasks

- LSTM
  - Two 3-layer LSTMs with 1024 hidden units corresponding to the forward and backward language models
- Transformer
  - 12-layer transformer
  - Each layer hidden size 512 units and 8 attention head
  - 38M parameters
- ResNet
  - 35 residual blocks
  - Each containing 2 conv. Layer with 256 filters
  - Kernel size 9, dilation rate 2

### Architectures for Downstream tasks (cont.)

- Bepler et al.
  - Two 3-layer LSTMs with 512 hidden units corresponding to the forward and backward language models
- Alley et al.
  - Unidirectional mLSTM
  - 1900 hidden units

#### Architectures for Downstream tasks: baseline

- Secondary structure: NetSerf2.0
  - Two convolution layers followed by two bidirectional LSTM followed by a linear output layer
- Contact prediction architecture: Similar to RaptorX-contact
  - 30 residual blocks having 2 conv. Layers each
  - 64 filter for each conv. layer
- Remote homology and protein engineering architecture
  - Predict attention value for each position of sequence to compute attention-weighted mean embedding
  - Followed by 512 hidden unit dense layer
  - Followed by relu and linear activation

Table 1: Language modeling metrics: Language Modeling Accuracy (Acc), Perplexity (Perp) and Exponentiated Cross-Entropy (ECE)

|                    | Random Families |       |       | Heldout Families |       |       | Heldout Clans |       |       |
|--------------------|-----------------|-------|-------|------------------|-------|-------|---------------|-------|-------|
|                    | Acc             | Perp  | ECE   | Acc              | Perp  | ECE   | Acc           | Perp  | ECE   |
| Transformer        | 0.45            | 8.89  | 6.01  | 0.35             | 11.77 | 8.87  | 0.28          | 13.54 | 10.76 |
| LSTM               | 0.40            | 8.89  | 6.94  | 0.24             | 13.03 | 12.73 | 0.13          | 15.36 | 16.94 |
| ResNet             | 0.41            | 10.16 | 6.86  | 0.31             | 13.19 | 9.77  | 0.28          | 13.72 | 10.62 |
| Bepler et al. [11] | 0.28            | 11.62 | 10.17 | 0.19             | 14.44 | 14.32 | 0.12          | 15.62 | 17.05 |
| Alley et al. 12    | 0.32            | 11.29 | 9.08  | 0.16             | 15.53 | 15.49 | 0.11          | 16.69 | 17.68 |
| Random             | 0.04            | 25    | 25    | 0.04             | 25    | 25    | 0.04          | 25    | 25    |

#### Results: downstream tasks

| Table 2. Results on downstream supervised tasks |                    |           |         |              |              |           |  |  |  |  |
|-------------------------------------------------|--------------------|-----------|---------|--------------|--------------|-----------|--|--|--|--|
| Method                                          |                    | Structure |         | Evolutionary | Engineering  |           |  |  |  |  |
|                                                 |                    | SS        | Contact | Homology     | Fluorescence | Stability |  |  |  |  |
| No Pretrain                                     | Transformer        | 0.70      | 0.32    | 0.09         | 0.22         | -0.06     |  |  |  |  |
|                                                 | LSTM               | 0.71      | 0.19    | 0.12         | 0.21         | 0.28      |  |  |  |  |
|                                                 | ResNet             | 0.70      | 0.20    | 0.10         | -0.28        | 0.61      |  |  |  |  |
| Pretrain                                        | Transformer        | 0.73      | 0.36    | 0.21         | 0.68         | 0.73      |  |  |  |  |
|                                                 | LSTM               | 0.75      | 0.39    | 0.26         | 0.67         | 0.69      |  |  |  |  |
|                                                 | ResNet             | 0.75      | 0.29    | 0.17         | 0.21         | 0.73      |  |  |  |  |
|                                                 | Bepler et al. [11] | 0.73      | 0.40    | 0.17         | 0.33         | 0.64      |  |  |  |  |
|                                                 | Alley et al. [12]  | 0.73      | 0.34    | 0.23         | 0.67         | 0.73      |  |  |  |  |
| Baseline features                               | One-hot            | 0.69      | 0.29    | 0.09         | 0.14         | 0.19      |  |  |  |  |
|                                                 | Alignment          | 0.80      | 0.64    | 0.09         | N/A          | N/A       |  |  |  |  |





(a) True Contacts

(b) LSTM

(c) LSTM Pretrain

(d) One Hot

(e) Alignment

- Alignment-based input currently outperforms self-supervised featurization
  - All state-of-the art methods use alignment-based input features
  - Can pertaining along with alignment-based input improve performance?
- Multiple tasks are required to appropriately benchmark a given model
  - Transformer performs worst in ss and contact prediction but best in fluorescence and stability tasks
- A challenge for future research in self-supervised learning
  - Create models for protein specific tasks or generalized tasks?