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Motivation

* Database of protein sequence growing exponentially
* Total number of sequence doubling each year
* Unlabeled sequence contains significant evolutionary information

® Can NLP extract the information?



Contribution: benchmarking

* Self supervised learning from unlabeled dataset
* Task assessing protein embedding (TAPE)

e Systematically evaluated semi-supervised learning on protein
sequences

* 5 biologically relevant supervised task

* Hypothesis: multiple tasks are required to accurately benchmark
any method
* Performance assessment of
* Recurrent-based model
* Convolution-based model
* Attention-based model

* Semi-supervised models



Background

* Protein terminology

* (xI,x2,x3, ..., xL) fixed alphabet for amino acids
* Protein sequence alignments

* Query = Database—> Alignment

* Semi-supervised learning
* Leverage information from both labeled and unlabeled data



Related Works

* Kernel-based pretraining for homology detection

* NLP-based techniques for transfer learning

* VAE to predict functional impact in mutations

* Transfer learning in protein ss and contact prediction

* Not rigorously benchmarked to assess the comparisons



Dataset

* Unlabeled sequence dataset
* Pfam database of 31 M protein domains
* Training and test dataset split: 95%/5%

* Supervised datasets
* Five biologically relevant downstream tasks

* Dataset ranges in size 8k-50k for training



Tasks

e Self-supervised:

* Next token prediction

* Mask token prediction

* Downstream tasks:

Protein SS

Protein contact map
Protein homology detection
Fluorescence

Stability



Tasks
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Losses

* Two self-supervised losses for NLP task
* Next-token prediction

* Masked-token prediction

* Protein specific loss
* Further supervised pretraining of models

* Supervised pretraining on contact prediction and remote
homology detection can improve secondary structure prediction
(Beplar et al)



Architectures for Downstream tasks

e LSTM

* Two 3-layer LSTMs with 1024 hidden units corresponding to the
forward and backward language models

* Transformer
* |2-layer transformer

* Each layer hidden size 512 units and 8 attention head

* 38M parameters

* ResNet
* 35 residual blocks
* Each containing 2 conv. Layer with 256 filters

* Kernel size 9, dilation rate 2
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Architectures for Downstream tasks (cont.)

* Bepler etal.

* Two 3-layer LSTMs with 512 hidden units corresponding to the
forward and backward language models

* Alley et al.
* Unidirectional mLSTM
* |900 hidden units
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Architectures for Downstream tasks: baseline

* Secondary structure: NetSerf2.0

* Two convolution layers followed by two bidirectional LSTM
followed by a linear output layer

* Contact prediction architecture: Similar to RaptorX-contact
* 30 residual blocks having 2 conv. Layers each

* 64 filter for each conv. layer

* Remote homology and protein engineering architecture

* Predict attention value for each position of sequence to compute
attention-weighted mean embedding

* Followed by 512 hidden unit dense layer

* Followed by relu and linear activation
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Results: language modeling

Table 1: Language modeling metrics: Language Modeling Accuracy (Acc), Perplexity (Perp) and

Exponentiated Cross-Entropy (ECE)

Random Families Heldout Families Heldout Clans

Acc Perp ECE Acc Perp ECE Acc Perp ECE
Transformer 0.45 8.89 6.01 035 11.77 887 028 1354 10.76
LSTM 0.40 8.89 6.94 024 1303 1273 0.13 1536 16.94
ResNet 041 10.16 6.86 031 1319 977 028 1372 10.62
Bepleretal. [11] 028 11.62 10.17 0.19 1444 1432 0.12 1562 17.05
Alley et al. [12] 0.32 11.29 908 0.16 1553 1549 0.11 16.69 17.68
Random 0.04 25 25 0.04 25 25 0.04 25 25
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Results: downstream tasks

Table 2: Results on downstream supervised tasks

Method Structure Evolutionary Engineering
SS  Contact  Homology  Fluorescence Stability
Transformer 0.70 0.32 0.09 0.22 -0.06
No Pretrain LSTM 0.71 0.19 0.12 0.21 0.28
ResNet 0.70 0.20 0.10 -0.28 0.61
Transformer 0.73 0.36 0.21 0.68 0.73
LSTM 0.75 0.39 0.26 0.67 0.69
Pretrain ResNet 0.75 0.29 0.17 0.21 0.73
Bepleretal. [11] 0.73 0.40 0.17 0.33 0.64
Alley et al. [12]  0.73 0.34 0.23 0.67 0.73
Baseline features One-hot 0.69 0.29 0.09 0.14 0.19
Alignment 0.80 0.64 0.09 N/A N/A
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Discussions

* Alignment-based input currently outperforms self-supervised
featurization

* All state-of-the art methods use alighment-based input features

* Can pertaining along with alignment-based input improve
performance?

* Multiple tasks are required to appropriately benchmark a given
model

* Transformer performs worst in ss and contact prediction but best
in fluorescence and stability tasks

* A challenge for future research in self-supervised learning

* Create models for protein specific tasks or generalized tasks!?
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