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CURRENT PROBLEMS

* Analyzing the structure and function of proteins is a key part of understanding

biology at molecular and cellular level.

* To fully understand the structure and function of protein, it is ideal to create de novo

proteins.

* Current protein design process relies heavily on heuristics and imperfect scoring

functions which requires expertise knowledge.

» Authors propose a new model using Generative Adversarial networks + Alternating

Direction Method of Multipliers to learn the protein design and folding process.



REVIEW - PROTEIN STRUCTURE

* Interactions between the side-chains, the protein backbone and the environment

defines the 3D protein structure

* Sequence-agnostic structure generation



REVIEW - GAN MODEL
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REVIEW - ROSETTA PROCEDURE
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Heuristic energy function

Monte Carlo fragment assembly

Pros: sampling is guided by a highly refined energy
function, model building process are intuitive and
flexible, guarantee correct local structure
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Cons: Very slow
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REVIEW - ADMM

* Determining 3D cartesian coordinates given pairwise distance is a convex problem.

This optimization problem can be solved quickly using SDP solvers if sample size is

small.
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REVIEW - ADMM

» Alternating direction method of multipliers (ADMM) is an algorithm that solves

convex optimization problems by breaking them into smaller pieces, each of which
are then easier to handle.

e ADMM is a combination of dual ascent with decomposition and the method of multipliers.
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METHOD - DATASET & MAP GENERATION

e Dataset: Protein Data Bank

* Generating maps:

* Encode 3D structure in 2D pairwise distances between a-carbon on the protein

backbone

* 16-,64-, 128- residue maps are generated

e Folding:

* Rosetta’s procedure: generate a-C distance constraints by fragment sampling
« ADMM algorithm: find 3D a-C placement that satisfies the generated constraints

* Then the a-C trace script is used to trace an idealized peptide backbone geometry



EXPERIMENTS

* The results are compared to

* TorusDBN (HMM)

FB5-HMM (HMM)

Multi-scale torsion angle GAN

3DGAN

Full-atom GAN



EXPERIMENTS

» Inpainting for protein design: testing how to use the trained generative models to infer

contextually correct missing portions of protein structures

* 10-residue supervised autoencoder: AE is trained to reconstruct completed 64-residue

pairwise distance maps given input maps with random 10-residue corruptions

 Random corruption supervised autoencoder: same AE is trained to reconstruct completed
64-residue pairwise distance maps given input maps with random 10-residue corruptions

residues in length.

* Rosetta remodel: uses fragment sampling to do loop closure, followed by a sequence design

process, guided by a heuristic energy score



RESULTS
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RESULTS

a) Real
structures

b) GAN,

folded by
fragment
sampling

c) GAN,
folded by
ADMM

d) Full-atom
GAN, folded
by ADMM

e) Torsion
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RESULTS

a) GAN b) AE 10 c)rand AE d) RosettaRemodel e) Distribution of GAN solutions
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RESULTS

Discriminator Score

Size of inpainted region

Mean rigid-body alignment error (A)
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