MARS:

MARKOV MOLECULAR SAMPLING

FOR MULTI-OBJECTIVE DRUG DISCOVERY

Xie, Yutong, Chence Shi, Hao Zhou, Yuwei Yang, Weinan Zhang, Yong Yu, and Lei Li.

Presented by: Samira Mali

Monte Carlo importance sampling

- sampling distributions
- target distribution
- Uniform energy model
- Non- uniform energy model

Why sampling from a distribution p(x) is hard?

- Annealing
- Metropolis- Hasting

Liu, Jun S. Monte Carlo strategies in scientific computing. Springer Science & Business Media, 2008.

No water on MARS?

Single properties:

Druglikeness (QED) octanol-water partition coefficient (logP)

Solubility in both water and fat.

The value is greater than one if a substance is more soluble in fat-like solvents, and less than one if it is more soluble in water.

• **C1**: It should satisfy multiple properties with high scores;

C2: It should produce novel and diverse molecules;

C3: Its generation process does not rely on either expert annotated or wet experimental data collected from a biochemistry lab

Fragment vocabulary

Fragments in molecules

Molecular graph editing actions (a) Molecular graph *adding* action: +(b) Molecular graph *deleting* action:

Algorithm 1: MARS

5

6

7

8

9

10

11

12

13

1 Set N initial molecules $\{x_i^{(0)}\}_{i=1}^N$ and initialize the molecular graph editing model \mathcal{M}_{θ} 2 Create an empty editing model training dataset $\mathcal{D} = \{\}$ 3 for t = 1, 2, ... do for i = 1, 2, ..., N do Compute probability distributions $(p_{add}, p_{frag}, p_{del}) = \mathcal{M}_{\theta}(x_i^{(t-1)})$ as Equations 7-9 Sample a candidate molecule x' from the proposal distribution $q(x' \mid x_i^{(t-1)})$ defined with probability distributions p_{add} , p_{frag} , p_{del} as Equations 3-4 if $u < \mathcal{A}(x_i^{(t-1)}, x')$ where $u \sim \mathcal{U}_{[0,1]}$ then Accept the candidate molecule $x_i^{(t)} = x'$ else Refuse the candidate molecule $x_i^{(t)} = x_i^{(t-1)}$ if The candidate improves the objectives, i.e. $\pi(x') > \pi(x_i^{(t-1)})$ then Adding the editing record $(x_i^{(t-1)}, x')$ into the dataset \mathcal{D} $\theta^{new} \longleftarrow \arg \max \log M_{\theta}(\mathcal{D})$ $q(x'|x) = \frac{1}{2} \cdot p_{\text{add}}(x, u) \cdot p_{\text{frag}}(x, u, k)$ $q(x'|x) = \frac{1}{2} \cdot p_{del}(x,b)$ $p_{\text{add}}(x) = \text{Softmax}(\{\text{MLP}_{\text{node}}(\boldsymbol{h}_u^{\text{node}}))\}_{u=1}^n) \in [0,1]^n$ $p_{\text{frag}}(x, u) = \text{Softmax}(\text{MLP}'_{\text{node}}(\boldsymbol{h}_u^{\text{node}})) \in [0, 1]^{|V|}$ $p_{\text{del}}(x) = \text{Softmax}(\{\text{MLP}_{\text{edge}}(\boldsymbol{h}_{b}^{\text{edge}}))\}_{b=1}^{2m}) \in [0,1]^{2m}$

(3)

(4)

(7)

(8)

(9)

Alzheimer disease in MARS?

--Experiment Setup

• Biological objectives.

GSK3: Inhibition against glycogen synthase kinase-3. JNK3: Inhibition against c-Jun N-terminal kinase-3.

- Non-biological objectives
- Multi-objective generation setting

Baselines

- GCPN (You et al., 2018) --→
 Paper 1, presented by Bernard in this class
- **JT-VAE** (Jin et al., 2018)

- RationaleRL (Jin et al., 2020)
- GA+D (Nigam et al., 2020)

Evaluation metrics

• Success rate (SR):

Percentage of generated molecules that are evaluated as positive on all given objectives

• Novelty (Nov):

Percentage of generated molecules with similarity less than 0.4 compared to the nearest neighbor xSNN in the training set

• Diversity (Div):

Measures the diversity of generated molecules,

• PM:

Product of the above three metrics

Results

Figure 3: t-SNE visualization of generated molecules (gray) and positive molecules in the training set (blue).

Results, cont'd

	-						-	-				
Method	$GSK3\beta$			JNK3				$GSK3\beta + JNK3$				
	SR	Nov	Div	PM	SR	Nov	Div	PM	SR	Nov	Div	PM
GCPN	42.4%	11.6%	0.904	0.04	32.3%	4.4%	0.884	0.01	3.5%	8.0%	0.874	0.00
JT-VAE	32.2%	11.8%	0.901	0.03	23.5%	2.9%	0.882	0.01	3.3%	7.9%	0.883	0.00
RationaleRL	100.0%	53.4%	0.888	0.47	100.0%	46.2%	0.862	0.40	100.0%	97.3%	0.824	0.80
GA+D	84.6%	100.0%	0.714	0.60	52.8 %	98.3%	0.726	0.38	84.7%	100.0%	0.424	0.36
MARS	100.0%	84.0%	0.718	0.60	98.8%	88.9%	0.748	0.66	99.5%	75.3%	0.691	0.52
				± 0.04				± 0.04				± 0.08
	I											
Mathad	G	$3SK3\beta + Q$	ED + SA	<u> </u>	j	NK3 + QI	ED + SA		GSK.	3β + JNK3	+ QED	+ SA
Method	SR	$SK3\beta + Q$ Nov	ED + SA Div	PM	J SR	NK3 + QI Nov	ED + SA Div	PM	GSK: SR	3β + JNK3 Nov	+ QED Div	+ SA PM
Method GCPN	SR 0.0%	SK3β + Q Nov 0.0%	ED + SA Div 0.000	PM 0.00	SR 0.0%	NK3 + QI Nov 0.0%	ED + SA Div 0.000	PM 0.00	GSK SR 0.0%	$3\beta + JNK3$ Nov 0.0%	+ QED Div 0.000	+ SA PM 0.00
Method GCPN JT-VAE	SR 0.0% 9.6%	$\frac{35K3\beta + Q}{Nov}$ $\frac{0.0\%}{95.8\%}$	ED + SA Div 0.000 0.680	PM 0.00 0.06	SR 0.0% 21.8%	NK3 + Ql Nov 0.0% 100.0%	ED + SA Div 0.000 0.600	PM 0.00 0.13	GSK SR 0.0% 5.4%	$3\beta + JNK3$ Nov 0.0% 100.0%	+ QED Div 0.000 0.277	+ SA PM 0.00 0.02
Method GCPN JT-VAE RationaleRL	SR 0.0% 9.6% 69.9%	GSK3β + Q Nov 0.0% 95.8% 40.2%	ED + SA Div 0.000 0.680 0.893	PM 0.00 0.06 0.25	SR 0.0% 21.8% 62.3%	NK3 + QI Nov 0.0% 100.0% 37.6%	ED + SA Div 0.000 0.600 0.865	PM 0.00 0.13 0.20	GSK3 SR 0.0% 5.4% 75.0%	3β + JNK3 Nov 0.0% 100.0% 55.5%	+ QED Div 0.000 0.277 0.706	+ SA PM 0.00 0.02 0.29
Method GCPN JT-VAE RationaleRL GA+D	0.0% 9.6% 69.9% 89.1%	SK3β + Q Nov 0.0% 95.8% 40.2% 100.0%	ED + SA Div 0.000 0.680 0.893 0.682	PM 0.00 0.06 0.25 0.61	SR 0.0% 21.8% 62.3% 85.7%	NK3 + QI Nov 0.0% 100.0% 37.6% 99.8%	ED + SA Div 0.000 0.600 0.865 0.504	PM 0.00 0.13 0.20 0.43	GSK SR 0.0% 5.4% 75.0% 85.7%	3β + JNK3 Nov 0.0% 100.0% 55.5% 100.0%	+ QED Div 0.000 0.277 0.706 0.363	+ SA PM 0.00 0.02 0.29 0.31
Method GCPN JT-VAE RationaleRL GA+D MARS	SR 0.0% 9.6% 69.9% 89.1% 99.5%	SK3β + Q Nov 0.0% 95.8% 40.2% 100.0% 95.0%	ED + SA Div 0.000 0.680 0.893 0.682 0.719	PM 0.00 0.06 0.25 0.61 0.68	SR 0.0% 21.8% 62.3% 85.7% 91.3%	NK3 + Ql Nov 0.0% 100.0% 37.6% 99.8% 94.8%	ED + SA Div 0.000 0.600 0.865 0.504 0.779	PM 0.00 0.13 0.20 0.43 0.67	GSK SR 0.0% 5.4% 75.0% 85.7% 92.3%	3β + JNK3 Nov 0.0% 100.0% 55.5% 100.0% 82.4%	+ QED Div 0.000 0.277 0.706 0.363 0.719	+ SA PM 0.00 0.02 0.29 0.31 0.55

Table 3: Results of different acceptance strategies and proposal strategies for molecular sampling.

AC Stratagy	Proposal		$GSK3\beta$ +	JNK3		$GSK3\beta + JNK3 + QED + SA$				
AC Strategy		SR	Nov	Div	PM	SR	Nov	Div	PM	
Annealed	Random	40.9%	94.9%	0.828	0.32	25.5%	80.4%	0.793	0.16	
AlwaysAC	Adaptive	49.1%	88.4%	0.742	0.32	10.1%	94.6%	0.716	0.07	
HillClimb	Adaptive	53.7%	96.1%	0.814	0.42	51.4%	86.6%	0.777	0.35	
Annealed	Adaptive	99.5%	75.2%	0.688	0.52	92.3%	82.4%	0.719	0.55	

Conclusion

- MARS includes a trainable proposal to modify chemical graph fragments, which is parameterized by an MPNN.
- Our experiments verify that MARS outperforms prior approaches on five out of six molecule generation tasks.
- It is capable of finding novel and diverse bioactive molecules that are both drug-like and highly synthesizable.

