Learning Protein Structure with a Differentiable Siroulator NH Ingraham et al, ICLR 2019 Presenter: Samira Mall

Introduction

• Energy landscape theory of protein folding

Folds that natural protein sequences adopt are those that minimize free energy.

[1] Ken Dill, Robert L Jernigan, and Ivet Bahar. Protein Actions: Principles and Modeling. Garland Science, 2017.

[2] Dill, Ken A., and Justin L. MacCallum. "The protein-folding problem, 50 years on." science 338.6110 (2012): 1042-1046.

Motivation

• End-to-end **differentiable** model:

Predict protein structure given amino acid sequence

Monte carlo simulation

MD simulation Langevin Dynamics

• Boltzmann Energy function $p_{\theta}(x) = \frac{1}{7}$

$$p_{\boldsymbol{\theta}}(\boldsymbol{x}) = \frac{1}{Z} \exp\left(-U_{\boldsymbol{\theta}}[\boldsymbol{x}]\right)$$

Sampling from Boltzmann distribution is difficult ---- Generative models

• Bayesian Inference is isomorphic with statistical mechanics

Neural Energy function

NEMO (Neural Energy Modeling and Optimization)

- Disadvantages of previous energy-based models
- This model is based on :

Neural Energy Simulator Model

Efficient Sampling Algorithm

- Imputation Network
- When has the simulator converged? Backpropagation through folding

Method

- Proteins
- Coordinate representation
- Sequence conditioning
- Internal coordinates

• How to construct evolutionary profile: PSSM

Loss

Method-cont'd

Training
Transform Integrator

Algorithm 1: Direct integrator	Algorithm 2: Transform integrator		
Input :State $z^{(0)}$, energy $U(x)$,	Input : State $z^{(0)}$, energy $U(x)$,		
step ϵ , time T , scale C	step ϵ , time T , scale C		
Output : Trajectory $x^{(0)}, \ldots, x^{(T)}$	Output : Trajectory $x^{(0)}, \dots, x^{(T)}$		
Initialize $\boldsymbol{x}^{(0)} \leftarrow \mathcal{F}(\boldsymbol{z}^{(0)});$	Initialize $\boldsymbol{x}^{(0)} \leftarrow \mathcal{F}(\boldsymbol{z}^{(0)});$		
while $t < T$ do	while $t < T$ do		
Compute forces $f_{z} = -\frac{\partial x}{\partial z}^{T} \nabla_{x} U$;	Compute forces $\boldsymbol{f_z} = -\frac{\partial \boldsymbol{x}}{\partial \boldsymbol{z}}^T \nabla_{\boldsymbol{x}} U;$		
Sample $\Delta z \sim \mathcal{N} \left(\frac{1}{2} \epsilon \mathbf{C} f_{z}, \epsilon \mathbf{C} \right)$;	Sample $\Delta \boldsymbol{z} \sim \mathcal{N} \left(\frac{1}{2} \epsilon \mathbf{C} \boldsymbol{f_z}, \epsilon \mathbf{C} \right);$		
	$ \mathbf{\tilde{x}} \leftarrow \mathbf{x}^{(t)} + \frac{\partial \mathbf{x}}{\partial \mathbf{z}}^{(t)} \Delta \mathbf{z}^{(t)}; \\ \mathbf{I} \mathbf{x}^{(t+\epsilon)} \leftarrow \mathbf{x}^{(t)} + \frac{1}{2} \left(\frac{\partial \mathbf{x}}{\partial \mathbf{z}}^{(t)} + \frac{\partial \tilde{\mathbf{x}}}{\partial \mathbf{z}} \right) \Delta \mathbf{z}^{(t)}; $		
$t \leftarrow t + \epsilon;$ end	$t \leftarrow t + \epsilon;$ end		

- LOSS (Monte carlo estimator/Distance/Angle/Trajectory/Hydrogen bond)
- Stabilizing backpropagation through time

Data

- For a training and validation set, the authors used all protein domains of length L <= 200 from Classes in CATH release 4.1 (2015)
- And then hierarchically purged a randomly selected set of A, T, and H categories.
- CATH hierarchically organizes proteins from the Protein Data Bank (Berman et al., 2000) into domains (individual folds) that are classified at the levels of Class, Architecture, Topology, and Homologous superfamily (from general to specific).

Results

Model	# params	Total	С	Α	Т	Н
NEMO (ours, profile)	21.3m	0.366	0.274	0.361	0.331	0.431
NEMO (ours, sequence-only)	19.1m	0.248	0.198	0.245	0.254	0.263
RNN baseline model (profile)						
2x100	5.9m	0.293	0.213	0.230	0.247	0.388
2x300 (avg. of 3)	8.8m	0.335	0.229	0.282	0.278	0.446
2x500	13.7m	0.347	0.222	0.272	0.286	0.477
2x700	21.4m	0.309	0.223	0.259	0.261	0.403
Number of structures		10381	1537	1705	3198	3941

Table 1: Test set performance across different levels of generalization

Generalization

levels

Table 4: Qualitative timings.	[†] Results on (CATH dataset	and 2 M40 GPUs.
-------------------------------	---------------------------	--------------	-----------------

Method	Generation time	Training time
RNN baseline [†]	milliseconds	$\sim 1 \mathrm{week}$
$NEMO^{\dagger}$	seconds	$\sim 2 \text{ months}$
Coevolution-based methods	minutes to hours	Coupled to generation
Physical simulations	days to weeks	N/A

Results- cont'd

NEMO: Predictive performance of structures generated by the sequence-only/profile model

RNN baseline performance for different hyperparameters

Disadvantages/Future work

- The computational cost of training and sampling is high
- Instability of backpropagating through long simulations

