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The Problem

* Protein function largely depends on their binding to one another
* This work addresses paired protein interface prediction

* If a non-H atom is within 6 Angstrom of any of atoms of its
pairing protein, it’s in interface

==

Figure 1: Protein Binding. The BNII protein (blue) opens up to bind to actin (red). While our method
is trained only using structures of complexes such as the one at right, without any information on
how the individual proteins deformed upon binding, we test on pairs of unbound structures such as
those at left with minimal loss in performance.



The Approach

* SASNet: an end-to-end learning method applied to interface
prediction

* |nstead of hand-crafted features, directly uses atomic positions
and ids

* Voxelizes the local atomic environments, or "surfacelets
* Applies a siamese-like 3D CNN



Related Works

* Graph-based approaches
* deriving properties of small molecules

* graph policy networks to generate new molecules
* Symmetry functions for protein-ligand binding affinity prediction

* 3D convolutional networks for protein-ligand binding affinity
prediction

* Graph CNN and Xgboost for interface prediction
* Single interface prediction/binding site prediction



Dataset

* Docking Benchmark 5 (DB5)

* DBb5-train: training/validation set of 175 complexes

* DB5-test: 55 complexes (the complexes added in the update from
DB4 to DB5S)

* Database of Interacting Protein Structures (DIPS)
e > 500 A2 buried surface area, better than 3.5 A resolution
* <30% sequence identity

Dataset # Binary Complexes # Amino Acid Interactions

DB5S 230 21,091
DIPS 42,826 5,767,093
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Rotation invariance: for training, randomly rotated, for testing, rotated 20 times and their

results averaged



Performance Comparison

Method CAUROC

NGF [4] 0.843 (0.851 +/- 0.010)
DTNN [35] 0.861 (0.861 +/- 0.004)
Node+Edge Average [23] 0.844 (0.850 +/- 0.004)
Order Dependent [23] 0.857 (0.864 +/- 0.006)
Node Average [23] 0.876 (0.877 +/- 0.005)
BIPSPI [24] 0.878 (0.878 +/- 0.003)
SASNet 0.892 (0.885 +/- 0.009)

Table 2: DB5-test CAUROC performance. For each method we report the CAUROC of the best
replicate (as selected by DIPS validation loss for SASNet, and DBS5-train loss for others) as well
as mean and standard deviation of CAUROC across training seeds (see section 5.1). We note that
while competing methods have used all available training data, due to computational limitations
our SASNet model is trained on less than 3% of our dataset, suggesting an opportunity for further
performance improvements.



Performance Comparison Cont.

Dose the performance improvement is for
DIPS training?

Method DBS5 Trained DIPS Trained

Node Average [23] 0.876 (0.877 +/- 0.005) 0.712 (0.714 +/- 0.022)
BIPSPI [24] 0.878 (0.878 +/- 0.003) 0.836 (0.836 +/- 0.001)
SASNet 0.876 (0.864 +/- 0.037) 0.892 (0.885 +/- 0.009)

Table 3: DB5-test CAUROC for leading methods trained on DB5-train and DIPS. Competing methods
with hand-engineered features experience a large drop in performance when trained on DIPS, despite
its greater size. This indicates the assumptions embedded in their high-level features are not suited to
the DIPS dataset. SASNet, on the other hand, increases in performance when trained on DIPS.



Ablation Study
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Figure 3: SASNet benefits from large input sizes (A), and has potential for being further scaled (B).
We plot the DB5-test CAUROC mean and standard deviation over five different training seeds.



Conclusion

* A method SASNet and a dataset DIPS
* My thoughts
* Paper is well written, easy to read

* Computation cost for random rotation in train and test?
* Overlap of DIPS train and DB 5-test?
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