Multi-Scale Representation Learning on Proteins

Vignesh Ram Somnath, Charlotte Bunne, Andreas Krause

Presented by Mohimenul Karim

Overview

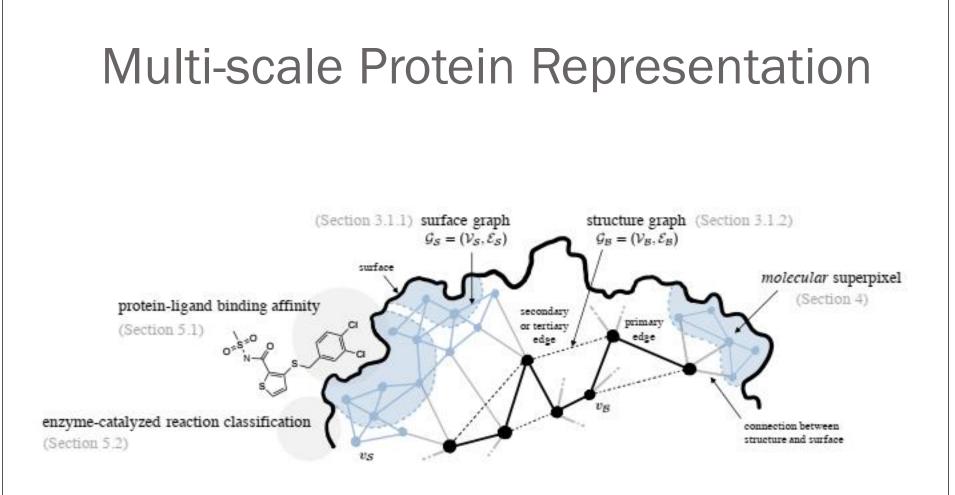
- Multi-scale graph construction of a protein-HOLOPROT
- Connects surface to structure and sequence
 - Surface capture the coarser details
 - Sequence (primary component) and structure (secondary and tertiary component) capture finer details
- Tests the representation on two different tasks-
 - Ligand-binding affinity (regression)
 - Protein function prediction (classification)

Previous work & Challenges

- Understanding the role and function of proteins is important for studying human diseases
- Representation incorporating the complex nature of the protein is necessary
- Previous study focused on either sequence, structure or surface
- Similar sequence can have completely different structure
- Structures with similar catalyzing property can behave differently towards drugs

Intuition and Design

- Interaction between protein and ligand is controlled by molecular surface contacts
- Hence, important to incorporate surface in the representation
- HOLOPROT consists of a surface and structure layer
- Layers are represented as graphs
- Layers are connected with explicit edges
- Learns representation by integrating the encoding from the layer below
- Propagating information helps to learn higher-level geometric and chemical properties



Multi-scale Protein Representation

- Represent protein P as graph G_p
- Two layers that capture different scales
 - Surface layer
 - Structure layer

Multi-scale Protein Representation

Surface layer

- Represented as a graph G_s
- Surface node u_s has a feature vector f_{us} (charge, hydrophobicity etc.)
- Each node has a residue identifier
- Surface nodes u_s and v_s have an edge if they are part of a triangulation

Structure layer

- Represented as a graph G_B
- Each node u_B corresponds to a residue r
- Two nodes $u_{B_1} v_B$ have an edge based on a certain distance between the C_{α} atoms of the nodes

Multi-scale Protein Representation (Multi-scale Graph)

- The multi-scale graph is obtained by connecting the surface node and the backbone nodes
- The above mentioned nodes have an edge if they have the same residue identifier r
- The graph is encoded by the multi-scale message passing network

Multi-scale Encoder

- Uses one message passing neural network (MPN) for each layer in the multi-scale graph
- $MPN_{\theta} MPN$ encoding process with parameter θ
- $MLP_{\theta}(x,y)$ –Multilayer perceptron with parameter θ and input is the concatenation of x and y
- $MLP_{\theta}(x)$ When input is only x
- id(u) Residue identifier of node u
- N(u) Neighbors of node u

Surface Message Passing Network

- Encode the surface layer G_s
- Inputs to the MPN
 - Node features f_{us}
 - Edge features f_{usvs}
- MPN propagates messages between nodes for K iterations
- Output A representation h_{us} for each surface node u_s

 $\{\mathbf{h}_{u_{\mathcal{S}}}\} = \mathrm{MPN}_{\theta_{\mathcal{S}}}(\mathcal{G}_{\mathcal{S}}, \{\mathbf{f}_{u_{\mathcal{S}}}\}, \{\mathbf{f}_{u_{\mathcal{S}}v_{\mathcal{S}}}\}_{v_{\mathcal{S}} \in \mathcal{N}(u_{\mathcal{S}})}).$

Structure Message Passing Network

- Preparation of input to MPN
 - For each node u_B : Concatenate f_{uB} and mean of surface node vector with the same residue identifier
 - Use MLP

$$S = \{\mathbf{h}_{u_{\mathcal{S}}} | \mathrm{id}(u_{\mathcal{S}}) = \mathrm{id}(u_{\mathcal{B}}) \}$$

$$\mathbf{x}_{u_{\mathcal{B}}} = \mathrm{MLP}_{\theta}(\mathbf{f}_{u_{\mathcal{B}}}, \sum_{s} \mathbf{h}_{u_{\mathcal{S}}}/|s|).$$

• With edge features f_{uBvB} , run K iterations

 $\{\mathbf{h}_{u_{\mathcal{B}}}\} = \mathrm{MPN}_{\theta_{\mathcal{B}}}(\mathcal{G}_{\mathcal{B}}, \{\mathbf{x}_{u_{\mathcal{B}}}\}, \{\mathbf{f}_{u_{\mathcal{B}}v_{\mathcal{B}}}\}_{v_{\mathcal{B}} \in \mathcal{N}(u_{\mathcal{B}})}).$

Structure Message Passing Network

- Graph representation c_{GP}
 - Aggregation of structure node representation

$$\mathbf{c}_{\mathcal{G}_{\mathcal{P}}} = \sum_{u_{\mathcal{B}} \in \mathcal{G}_{\mathcal{B}}} \mathbf{h}_{u_{\mathcal{B}}}.$$

Task Specific Training

- Multi-scale encoding method is evaluated for two different tasks
 - Protein-ligand binding affinity regression
 - Enzyme-catalyzed reaction classification

Protein-ligand Binding Affinity Prediction

- Depends on the interaction of a protein encoded using HOLOPROT and a ligand (small molecules in most cases)
- Use MPN to encode the ligand represented as graph G_L and aggregate the node features
- Obtain the graph representation c_{GL}
- Concatenate the graph representations of protein and ligand
- Use MLP to obtain the prediction

 $s_a = \mathrm{MLP}_{\phi}(c_{\mathcal{G}_{\mathcal{P}}}, c_{\mathcal{G}_{\mathcal{L}}}).$

Enzyme-catalyzed Reaction Classification

- Use MLP
- Input
 - • The graph representation $c_{\rm GP}$ of the protein obtained via HOLOPROT

 $p_k = \mathrm{MLP}_{\phi}(c_{\mathcal{G}}).$

Molecular Superpixels

- Segments on the protein surface capturing higher-level fingerprint features
- Improve computational and memory efficiency
- Achieved via optimizing the objective function

$$\max_{\mathcal{M}} - \underbrace{\sum_{i} \mu_{i} \sum_{j} p_{ij}(\mathcal{M}) \log \left(p_{ij}(\mathcal{M}) \right)}_{(i.) \text{ entropy rate}} - \underbrace{\sum_{i} p_{Z_{\mathcal{M}}}(i) \log \left(p_{Z_{\mathcal{M}}}(i) \right)}_{(ii.) \text{ balancing function}}$$
(ii.) balancing function

Also check the second last paragraph of Section 4

Evaluation (Protein-ligand Binding Affinity Prediction)

- Dataset
 - PDBBIND database
 - 4709 biomolecular complexes
- Baselines
 - Sequence based
 - Structure based
 - Geometric deep learning on protein molecular surfaces

Evaluation (Protein-ligand Binding Affinity Prediction)

Table 1: Protein-Ligand Binding Affinity Prediction Results Comparison predictive performance of ligand binding affinity using the PDBbind dataset (Liu et al., 2017) of HOLOPROT against other methods. Results are reported for 3 experimental runs.

Model	# Params	Sequence Identity (30 %)			Sequence Identity (60 %)		
		RMSE	Pearson	Spearman	RMSE	Pearson	Spearman
Sequence-based Methods							
Öztürk et al. (2018)	1.93 M	1.866 ± 0.080	0.472 ± 0.022	0.471 ± 0.024	1.762 ± 0.261	0.666 ± 0.012	0.663 ± 0.015
Bepler and Berger (2019)	48.8 M	1.985 ± 0.006	0.165 ± 0.006	0.152 ± 0.024	1.891 ± 0.004	0.249 ± 0.006	0.275 ± 0.008
Rao et al. (2019)	93.0 M	1.890 ± 0.035	0.338 ± 0.044	0.286 ± 0.124	1.633 ± 0.016	0.568 ± 0.033	0.571 ± 0.021
Elnaggar et al. (2020)	2.4M ¹	1.544 ± 0.015	0.438 ± 0.053	0.434 ± 0.058	1.641 ± 0.016	0.595 ± 0.014	0.588 ± 0.009
Surface-based Methods							
Gainza et al. (2020)	0.62 M	1.484 ± 0.018	0.467 ± 0.020	0.455 ± 0.014	1.426 ± 0.017	0.709 ± 0.008	0.701 ± 0.011
Structure-based Methods							
Townshend et al. (2020)2		1.429 ± 0.042	0.541 ± 0.029	0.532 ± 0.033	1.450 ± 0.024	0.716 ± 0.008	0.714 ± 0.009
Townshend et al. (2020)3		1.936 ± 0.120	0.581 ± 0.039	0.647 ± 0.071	1.493 ± 0.010	0.669 ± 0.013	0.691 ± 0.010
Hermosilla et al. (2021)	5.80 M	1.554 ± 0.016	0.414 ± 0.053	0.428 ± 0.032	1.473 ± 0.024	0.667 ± 0.011	0.675 ± 0.019
HOLOPROT (0)	1.44 M	1.464 ± 0.006	0.509 ± 0.002	0.500 ± 0.005	1.365 ± 0.038	0.749 ± 0.014	0.742 ± 0.011
HOLOPROT (+)	1.76 M	1.491 ± 0.004	0.491 ± 0.014	0.482 ± 0.017	1.416 ± 0.022	0.724 ± 0.011	0.715 ± 0.006

Model	# Params Scaffold			
		RMSE	Pearson	Spearman
Sequence-based Methods				
Öztürk et al. (2018)	1.93 M	1.908 ± 0.145	0.384 ± 0.014	0.387 ± 0.016
Bepler and Berger (2019)	48.8 M	1.864 ± 0.009	0.269 ± 0.002	0.285 ± 0.019
Rao et al. (2019)	93.0 M	1.680 ± 0.055	0.487 ± 0.029	0.462 ± 0.051
Elnaggar et al. (2020)	2.4M ¹	1.592 ± 0.009	0.398 ± 0.027	0.409 ± 0.029
Surface-based Methods				
Gainza et al. (2020)	0.62 M	1.583 ± 0.132	0.416 ± 0.111	0.412 ± 0.126
Structure-based Methods				
Hermosilla et al. (2021)	5.80 M	1.592 ± 0.012	0.365 ± 0.024	0.373 ± 0.019
HOLOPROT (0)	1.44 M	1.523 ± 0.028	0.489 ± 0.019	0.491 ± 0.020
HOLOPROT (.)	1.28 M	1.516 ± 0.014	0.491 ± 0.016	0.493 ± 0.014

full surface

molecular superpixels

Evaluation (Enzyme-catalyzed Reaction Classification)

- Dataset
 - 37428 proteins from 384 EC numbers
- Baselines
 - Sequence based
 - Partially pretrained on millions of sequences
 - Geometric deep learning based

Evaluation (Enzyme-catalyzed Reaction Classification)

Table 2: Enzyme-Catalyzed Reaction Classification Results Comparison of classification accuracy of HOLOPROT against other methods.

Model	Parameters	Reaction Class Accuracy
Sequence-based Methods		
Hou et al. (2018)	41.7 M	70.9 %
Bepler and Berger (2019)	31.7 M	66.7 %
Rao et al. (2019) (Transformer)	38.4 M	69.8 %
Elnaggar et al. (2020)	420.0 M	72.2 %
Structure-based Methods		
Kipf and Welling (2017)	1.0 M	67.3 %
Derevyanko et al. (2018)	6.0 M	78.8 %
Hermosilla et al. (2021)	9.8 M	87.2 %
HOLOPROT (.)	0.64 M	77.8 %
HOLOPROT ()	0.64 M	78.9 %

Ablation Studies

Table 3: Ablation Studies Results Evaluation of architectural design choices of HOLOPROT by analyzing the performance of its individual components as well as feature summarization of molecular superpixels.

Model	Lig Seq	Enzyme Class		
	RMSE	Pearson	Spearman	Accuracy
Structure	1.476 ± 0.027	0.51 ± 0.029	0.503 ± 0.027	74.2 %
Surface	1.482 ± 0.015	$\textbf{0.512} \pm \textbf{0.022}$	$\textbf{0.505} \pm \textbf{0.017}$	28.6 %
HOLOPROT (.)	$\textbf{1.464} \pm \textbf{0.006}$	0.509 ± 0.002	0.500 ± 0.005	77.8 %
HOLOPROT ()	1.491 ± 0.004	0.491 ± 0.014	0.482 ± 0.017	78.9 %
HOLOPROT (1.491 ± 0.027	0.503 ± 0.005	0.492 ± 0.004	75.7 %

full surface
molecular superpixels
molecular superpixel with MPN

Limitations of The Work

- Relies on existing protein structures, although there are a lot of protein sequence data
- Requires precomputed surface meshes resulting in an additional preprocessing step

Thank you