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Overview

e Multi-scale graph construction of a protein-HOLOPROT

e Connects surface to structure and sequence
e Surface capture the coarser details

® Sequence (primary component) and structure (secondary and

tertiary component) capture finer details

® Tests the representation on two different tasks-
® Ligand-binding affinity (regression)

® Protein function prediction (classification)
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Previous work & Challenges

® Understanding the role and function of proteins is important

for studying human diseases

* Representation incorporating the cornplex nature of the

protein 1S necessary

* Previous study focused on either sequence, structure or

surface
e Similar sequence can have completely different structure

e Structures with similar catalyzing property can behave

differently towards drugs




Intuition and Design

® Interaction between protein and ligand is controlled by
molecular surface contacts

* Hence, important to incorporate surface in the
representation

e HOLOPROT consists of a surface and structure layer
* Layersare represented as graphs
* Layersare connected with explicit edges

® Learns representation by integrating the encoding from the
layer below

* Propagating information helps to learn higher—level
geometric and chemical properties
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Multi-scale Protein Representation
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Multi-scale Protein Representation

® Represent protein P as graph Gp

e Two layers that capture different scales
e Surface layer

e Structure layer




Multi-scale Protein Representation

Surface layer Structure layer

* Represented as a graph G, * Represented as a graph Gy

® Surface node u_ has a * Each node ug corresponds
feature vector f_ (charge, to a residue r
hydrophobicity etc.) ® Two nodes ug vy have an

¢ Each node has a residue edge based on a certain
identifier distance between the C

® Surface nodes u, and v, atoms of the nodes

have an edge if they are

part of a triangulation
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Multi-scale Protein Representation
(Multi-scale Graph)

® The multi-scale graph is obtained by connecting the surface

node and the backbone nodes

® The above mentioned nodes have an edge if they have the

same residue identifier r

e The graph is encoded by the multi-scale message passing

network




Multi-scale Encoder

* Uses one message passing neural network (MPN) for each

layer in the multi-scale graph
* MPNg— MPN encoding process with parameter 0
* MLPg(x,y) —Multilayer perceptron with parameter 6 and

input is the concatenation of x and y
* MLPg(x)—When input is only x
® id(u) — Residue identitier of node u

® N(u) — Neighbors of node u




Surface Message Passing Network

* Encode the surface layer G,

* Inputs to the MPN
® Node features f

* Edge features f

* MPN propagates messages between nodes for K iterations

* Output — A representation h for each surface node u,

{hug} — }'IPNHS [gS‘: {fi..l.lg }:. {THSES}I'SIE;.';[_HIS;]‘




Structure Message Passing Network

® Preparation of input to MPN

® For each node ug: Concatenate f ; and mean of surface node

vector with the same residue identifier

® Use MLP
S ={h,_ |id(ug) = id(ug)}
Xux = MLPy(f, ., Z5bus/|5]).

* With edge featuresf ; 5, run K iterations

{hﬂﬂ} — hIPNEH {gﬂf {H-uﬁ }:n {fuﬁvg }'I.'E, E.-"u"(uﬁj}'
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Structure Message Passing Network

° Graph representation cp

® Aggregation of structure node representation




Task Specific Training

e Multi-scale encoding method is evaluated for two different
tasks

° Protein—ligand binding affinity regression

o Enzyme—catalyzed reaction classification




Protein-ligand Binding Affinity

Prediction

* Depends on the interaction of a protein encoded using
HOLOPROT and a ligand (small molecules in most cases)

* Use MPN to encode the ligand represented as graph G, and

aggregate the node features
e Obtain the graph representation ¢
e Concatenate the graph representations of protein and ligand

* Use MLP to obtain the prediction

s = MLP 4(cgp. cg. )




Enzyme-catalyzed Reaction
Classification

e Use MLP
° Input

® The graph representation cg; of the protein obtained via

HOLOPROT

pi = MLPy(eg).




Molecular Superpixels

® Segments on the protein surface capturing higher—level

fingerprint features
* Improve cornputational and memory efficiency

e Achieved via optimizing the objective tunction

max — Y mi Y pig(M)log (pis (M) = Y pz,, (i) log (pz. (i) — na
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(1.) entr;py rate (11.) balancing function

st. M C Esandnyy =k,

Also check the second last paragraph of Section 4




Evaluation (Protein-ligand Binding
Affinity Prediction)

® Dataset
e PDBBIND database

® 4709 biomolecular complexes

e Baselines
® Sequence based
e Structure based

e Geometric deep learning on protein molecular surfaces




Evaluation (Protein-ligand Binding
Affinity Prediction

Table 1: Protein-Ligand Binding Affinity Prediction Results Comparison predictive performance
of ligand binding affinity using the PDBbind dataset (Liu et al., 2017) of HOLOPROT against other

methods. Results are reported for 3 experimental runs.

Mludel ¥ Params Sequence ldentity (30 %) Sequence Idenfity (60 %)
EMSE Pearson Spearman EMSE Pearson Spearman
Sequence=-hased Methods
Chetiirk &t al. (2018) 1.93 M LEAG = 0,080 0472 £ 0022 0471 = 0024 1762 =261 (bbb = 002 (RG63 = (LIS
Bepler and Berger (2009} 42 B M 1985 = 0,006 (LI65 = 0006 0152 4+ 0024 1.59] & 0ukd (0249 4 0006 (L2T5 = (L0g
Foan et al. (2009 93nmM LE90 £ 0,035 033K = 0044 D286+ 0124 1633 £ 0016 (568 4= 0033 (L5T] £ (U021
Elnaggar el al. (220) ZAM" 1544 = 0,015 438 &= 0.053 0434 £+ 0058 1okl = 00be (58S 4= 0kl (R5SES == (Lo
Surfuce-based Methods
Ciaances et al. (202400 G2 M LARL = 0018 0467 = 0.020 D455 &= 0014 1A £ 0017 (CAFE = Q0 (0] == il
Struciure=-hased Methods
Tewwnshend et al. [ 220)* - LA29 = 0042 0540 £ 0029 D532 4 0033 1ASN £ 0024 (716 &= 0008 (714 == (Lo
Towwnshend et al. (2020 - 1936 = 0.120 (58] &= 0039 AT 4= L7l 1,493 £ 00y (ossY 4= 003 (kW] == (oI
Hermeosilla et &l (2021) 580 M 1554 £ 0,016 414 £ 0.053 D428 4+ 0032 1473 £ 00024 (s6T £ 01 (RGTS = (LY
HOLOPROT (&) 144 M LAGd = 0006 0500 &= 0002 D500 4= 0es 1365 & (U038 L7494 o4 742 £ i1l
HOLOPROT {#) 1.76 M 1A9] =000 0491 = 0014 0452 &= 0017 1416 0022 (724 =001 (RTIS = (006
Alole] # PFarams ScalTokd
EMXE Peamson Spearman
Sequence-hased Metlwods
Crrtiork e al. (2005} 193 M LGS & (L1145 03B & 0uild O3ET £ 00016
Bepler and Berger (20019 dEE M L Bhd & (RO 0269 4 (002 (LZES £ 0001w
Foa et al. (20049 930k M L6E0 £ (055 O4ET & (0028 (a2 = 00051
Elnaggar et al. {2020) 2am! 1592 & (L0 03UE & (02T (e 4= 002
Surfsce-hased Methosds
Chaimea et al, (2020) a2 M L33 £ (0132 04160001 412 =0126
Structiure=hased Methads
Hermosilla et al. (2021 58FM 1592 £ (k012 0365 & 00024 (373 = 0001w
HOLOPROT (2] Ldd M 1.523 £ (h028  OL4E9 &= (oY (edte] == 00020
HOLOPROT (%) 1L.ZE M LE16 = 0014 4% 4 00D %3 4 uld

full surface

+ molecular superpixels




Evaluation (Enzyme-catalyzed Reaction
Classification)

® Dataset
® 37428 proteins from 384 EC numbers

® Baselines
® Sequence based
o Partially pretrained on millions of sequences

* Geometric deep learning based




Evaluation (Enzyme-catalyzed Reaction
Classification)

Table 2: Enzyme-Catalyzed Reaction Classification Results Comparison of classification accuracy
of HOLOPROT against other methods.

Model Parameters Reaction Class
Accuracy
Sequence-based Methods
Hou et al. (2018) 41.7M 70.9 %
Bepler and Berger (2019) 317 M 66.7 %
Rao et al. (2019) (Transformer) 384 M 69.8 %
Elnaggar et al. (2020) 4200 M 72.2 %
Structure-based Methods
Kipf and Welling (2017) 1.OM 67.3 %
Derevyanko et al. (2018) 6.0M 78.8 %
Hermosilla et al. (2021) 98 M 87.2 %
HOLOPROT (©) 0.64 M 77.8 %
HOLOPROT (#) 0.64 M 78.9 %

»  full surface ¢ molecular superpixels




Ablation Studies

Table 3: Ablation Studies Results Evaluation of architectural design choices of HOLOPROT by
analyzing the performance of its individual components as well as feature summarization of molecular

superpixels.

Ligand Binding Affinity Enzyme Class
Model Sequence ldentity (30 %)
EMSE Pearson Spearman Accuracy

Structure 1476 £0.027 051 £0.029 0503 £ 0.027 74.2 %
Surface 1482 £0.015 0512 £ 0.022 0505 £ 0.017 28.6 %
HoLoProT (¢) 1464 £ 0.006 0509 £ 0,002  0.500 £ 0.005 778 %
HoLoProT (#) 1.491 £ 0.004 0491 £0.014 0482 £ 0.017 789 %
HoLoProT (w) 1.491 £ 0.027 0503 £0.005 0492 £ 0.004 75.7 %

full surface

+ molecular superpixels

= molecular superpixel with MPN




Limitations of The Work

* Relies on existing protein structures, although there are a lot

of protein sequence data

* Requires precomputed surface meshes resulting in an

additional preprocessing step
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