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Background

= Chromatin
« The folding structure of the DNA molecule combined with the helper molecules (e.g. Histone proteins)
» The spatial configuration defines the functional properties of DNA

« Can assume several function-defining epigenetic states

» Key determinant of chromatin state
« Underlying primary DNA sequence

- Sequence patterns: Responsible for recruiting histone proteins and their chemical modifications

= Utmost interest for predicting chromatin related states from primary DNA sequences

. Methods based on machine learning and deep neural networks



Problem

= Treating DNA sequence data as a sequence
» Neglects its inherent and biologically relevant spatial configuration and the resulting interaction between
distal sequence elements

« Spatial configuration of DNA suggests the relevance of a higher-dimensional spatial representation of DNA

= Lack of comprehensive understanding for the structure of the chromatin

« Suggestions for higher-dimensional representations of DNA do not exist




Proposed approach

= HCNN

« A convolutional neural network that takes an image-representation of primary DNA sequence as its input,

and predicts chromatin-related states

1) Use space-filling curves for DNA representation by mapping DNA sequences to higher-dimensional images

2) Predict chromatin states using a CNN designed for detecting distal relations




Related work

1) DNA sequence classification

The task of determining whether a sequence S belongs to an existing class C

. Pahm et al. (2005) and Higashihara et al.(2008)

» Support vector machines to predict chromatin state from DNA sequence features
. Nguyen et al. (2016)
* CNN-based model (CNN+FC layer) using the sequential form of DNA sequence as input

2) DNA sequence transformation into image using Hilbert curves
= Anders (2009)

» Demonstrating the power of Hilbert curves for visualizing DNA
= Elgin (2012)
* Results indicated that when arranging DNA sequences based on Hilbert curves, contiguous areas belonging to identical

chromatin states cover rectangular areas



Methods

1. DNA sequence Representation
1) Represent a sequence as a list of k-mers

« Sequence’s k-mers: k-letter words from the alphabet {A,C,G, T} that together make up the sequence
ex) TGACGAC: the list of 3-mers {TGA, GAC, ACG, CGA, GAC}

 Previous work: 3-mers and 4-mers are useful

« Preliminary experiments: k = 4 yields the best performance

2) Transform each k-mer into a one-hot vector

A vector of length 4% is needed to represent all k-mers in a DNA sequence

« DNA sequence as a list of 4-mers: a list of one-hot vector of length 256




Methods

3) Transform the list of one-hot vectors int an image

= Assign a one-hot vector of length 256 to each pixel using space-filling curves

= Space filling curves

 Map 1D sequences to a 2D surface preserving continuity of the sequence

A-1-B--[--€-1-D A---B-1-C--| 4D Y o F-4-6 | 1----K
1 // % //| ! ! ! 1
i s S I ; : ; .
E-t-f--|--G-1-"H He-t-6--|--F-4- £ B B K E M= - -t b
> 7/ // |
: P ¥ /, : :
1 4 (4 /’ |

3 o], ol e i s S l.z R P Li? =l N--|--M

: 1 ——

1, &’ ’ A 4 1 1
M-1-N--[--0-1-»p Pe-t-O--|--N-{-#M G M- -|- =N P A-+--B Qe fsgp
(a) Reshape curve (b) snake curve (¢c) Diag-Snake curve (d) Hilbert curve

Figure 5: Space-filling curves



Methods

= Hilbert curve
» Recursively the curve is divided into four parts, which are mapped to the four quadrants of a square

* Results: a square image of size 2"x2" (n: the order of the curve)

@® Choose n such that 2"x2" is at least the number of k-mers in the sequence to fit all k-mers into the image
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Methods
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Methods

2. Network architecture

» Each pixel in the generated image: A one-hot vector representing k-mer
* k = 4: Image of 256 channels (Overfitting)

» Each channel contains very sparse information

= Design a CNN for high dimensional image inspired by ResNet and Inception

1) First part: To reduce the sparseness of the input image and capture long range features with large filters

Computation block  Computation block

1nduj
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Convolution layer  Activation layer BN layer Pooling layer  Fully connected layer Residual Block



Methods

2) Computation Block

« The outputs of two Residual blocks and one identity mapping are summed
Li4+1

* Residual blocks
Concatenation of the output from five layers with two convolutions and the input

Residual block

3) Last part
* To obtain the output classification label

Computation block  Computation block
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Convolution layer  Activation layer BN layer Pooling layer  Fully connected layer Residual Block



Experiments

= Datasets
1) Ten publicly available datasets from Pokholok et al. (2005)
* DNA sequences with a length of 500 base pairs
« Each sequence is labeled either as “positive” or “negative”,

indicating whether the subsequence contains regions that are wrapped around a histone protein

« Randomly chosen 90% of the dataset: Training, Name gSamples | Description
H3 14965 H3 occupancy
H4 14601 H4 occupancy

5%: validation, 5%: Evaluation H3K9 acetylation

relative to H3
H3K14 acetylation
relative to H3

H3K9ac 27782

H3K14ac 33048

2) Splice-junction genes sequences dataset from Lichman (2013) Hdac aqgos | v acemlation
relative to H3
H3K4 monomethy-
« DNA subsequence of length 61 H3K4mel | 31677 | 1tion relative to H3
H3K4 dimethylation

H3K4me2 30683 relative to H3

H3K4me3 36799 H3K4 trimethylation
relative to H3

an exon-to-intron splice junction or neither : .
@ P J @ H3K36me3 | 34880 H3K36 trimethylation

« Each subsequence known to be (O an intron-to-exon splice-junction,

relative to H3

H3K79 trimethylation
relative to H3
Splice-junction

Gene Sequences

« Using 1-mers as the dataset is relatively small s | DEgsT

Splice 3190




Experiments

= Competing methods
1) Support vector machine by Higashihara et al. (2008)

2) Seg-CNN by Nguyen et al. (2016)

3) LSTM using 4-mer profile of the sequence as input

* Including only the 100 most frequent 4-mers as 256 4-mers showed overfitting in the preliminary test

4) Seqg-HCNN
« Flattened version of HCNN without space-filling curves using 49x1 convolution filter in the 1D-sequence model




Results: Prediction performance comparison for each dataset

Table 3: Prediction accuracy obtained with an SVM-based method, Seq-CNN from Nguyen et al. (2016),
LSTM, seq-HCNN and HCNN. The results for SVM are taken from Table 12 in Higashihara et al. (2008).
In the splice dataset, Seq-CNN performed best when using 4-mers, while for HCNN and seq-HCNN 1-mers
yielded the best performance.

Dataset | SVM LSTM | Seq-CNN seq-HCNN HCNN
H3 | 86.47% | 64.13% 79.25% | 86.86 £ 1.563% | 87.34 +0.263%
H4 | 87.82% | 63.82% 81.86% | 87.31 +0.952% | 87.33+0.264%
H3K9ac | 75.08% | 63.07% 68.76% | 78.47 +0.699% | 79.19+0.239%
H3Kl14ac | 73.28% | 68.31% 68.31% | 75.06 +£0.987% | 74.79+0.226%
Hdac | 72.06% | 60.63% 64.80% | 77.04 +1.256% | 77.06+0.233%
H3K4mel | 69.71% | 60.43% 62.60% | 73.47 £0.789% | 73.21+0.221%
H3K4me2 | 68.97% | 61.45% 62.38% | 73.91 +0.631% | 74.27+0.224%
H3K4me3 | 68.57% | 58.03% 62.33% | 74.54 +£0.865% | 74.45+0.225%
H3K36mel | 75.19% | 60.78% 72.20% | 77.18 £0.973% | 77.03+£0.232%
H3K79mel | 80.58% | 63.84% 75.07% | 81.66 +1.264% | 81.63+0.246%
Splice | 94.70% | 96.23% 91.82% | 93.21 +1.645% | 94.11+0.284%

Table 5: Recall, Precision, area under precision-recall curve (AP) and area under ROC curve (AUC) for

seq-HCNN and HCNN. The reported values are the means over ten folds.

Dataset Recall Precision AP AUC
seq-HCNN | HCNN seq-HCNN | HCNN seq-HCNN | HCNN seq-HCNN | HCNN

H3 85.67% 87.33% | 85.67% 87.33% | 90.33% 93.33% | 91.00% 93.67%
H4 87.00% 87.33% | 87.00% 87.00% | 92.67% 94.67% | 93.67% 94.67%
H3K9ac 78.33% 79.00% | 78.67% 79.00% | 78.33% 85.00% | 79.67% 85.33%
H3K14ac 74.00% 73.67% | 74.67% 75.00% | 73.67% 79.67% | 76.33% 81.33%
H4ac 76.67% 77.67% | 77.33% 78.33% | 78.67% 82.67% | 80.33% 83.33%
H3K4mel 72.33% 73.00% | 72.67% 73.67% | 70.67% 76.33% | 71.67% 78.33%
H3K4me?2 70.67% 72.33% | 73.00% 74.00% | 69.33% 77.33% | 70.00% 78.67%
H3K4me3 74.33% 74.67% | 75.00% 74.67% | 71.00% 78.67% | 72.00% 80.00%
H3K36me3 | 76.00% 76.67% | 77.00% T7.67% | 76.33% 82.00% | 79.33% 83.00%
H3K79me3 | 81.00% 82.33% | 81.00% 82.67% | 79.67% 88.00% | 81.00% 88.67%
Splice 91.00% 95.00% | 90.67% 94.33% | 95.00% 97.67% | 97.33% 98.67%




Results: Performance evaluation for training time and prediction accuracy with different mapping methods

o0 M Hilbert M reshape Diag-snake B Snake [ Sequence
Table 4: Training times, presented as min:sec. -
Dataset LSTM | seq-CNN | seq-HCNN | HCNN
H3 35:43 95:23 6:47 3:40 0%
H4 45:32 95:53 5:12 3:12
H3K9ac 76:06 173:18 17:24 7:40 > 8%
H3K14ac 81:21 180:56 17:42 13:24 n;:
H4ac 93:32 181:33 24:48 17:32 8 wu
H3K4mel 93:44 192:20 18:30 10:38 <
H3K4me2 94:22 188:13 18:23 14:38
H3K4me3 96:03 162:32 20:40 11:33 S
H3K36me3 | 93:48 161:12 2152 16:37
H3K79me3 | 64:28 158:34 14:25 10:13 70%
Splice 6:42 35:12 3:42 1:30
et H3 H4 H3K9ac H3K14ac H4ac H3K4me1 H3K4me2 H3K4me3 H3K36me1 H3K79me1 Splice
DATASET

Figure 4: HCNN with different mapping strategies




Discussion

» Factors for improvement over the existing CNN by Nguyen et al.(2016)
« Larger convolutional filters allowing the model to detect long-distance interactions
« Small number of parameters allowing for faster optimization
: Due to the size of the layer preceding the fully connected layer, which is larger in the existing model

« Use of a 2D input which enhances the model’s capabilities of incorporating long-term interactions

= Limitation

« Fixed length in Hilbert curves

: The generated images contain some empty spaces, consuming computation resources




My thoughts

Hilbert curves does not leverage any biological input (no biological meaning)
No difference between randomly putting the sequence and Hilbert curves
» Authors mentioned that treating the sequence as just a sequence neglects its inherent and biological relevant
spatial configuration, but usage of Hilbert curves could rather make the model to learn wrong local features
= Too many empty spaces and channels

= Hard to interpret the model by transforming 1D to 2D image
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