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Motivation

Learning from Protein Structure

Sequential Voxelized Graph structure
representation representation representation
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src: https://team.inria.fr/nano-d/software/korp-pl/
https://journals.plos.org/plosone/article/figure?id=10.1371/journal.pone.0221347.g002



Motivation

Learning from Protein Structure

Learning with CNN Learning with GNN
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Geometric aspect Relational aspect

Geometric Vector Perceptrons (GVP)




Background

Geometric Vector Perceptrons (GVP)

protein design

:> sequence
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predict

d GPV layer

d Improves GNN

d MLP - GVP in GNN
d Operates directly on scalar backbone structure

quality assessment

+ sequence

and geometric features

candidate structure
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Architecture

Geometric Vector Perceptron
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Output (5,V)

Input: Scalar and vector features (s, V) € R™ x R¥** .
Output: Scalar and vector features (s', V') € R™ x RH*3
h < max (v, p)
GVP:

vV, +— W,V € Rhx3

V, + WV, eR+*

Sh 4 || Vil (row-wise) € R"

vy — ||Vul|, (row-wise) € R#

Shin ¢ concat(sy,s) € R

Sm wfmshﬁ—n +b eR™

s +—o(s,) €R™

V' + o7 (v,) ® V,, (row-wise multiplication) € R**?
return (s, V')



Dataset

Protein design
d CATH4.2 dataset

18204, 608 and 1120
structures for training,
validation and testing,
respectively

O TS50 dataset for testing
d Sequence identity < 30%

MQA
Training:

CASP5- 10: 79200 models for
528 targets

Testing:

CASP11 -12: 84 and 40

targets respectively (stagel &
2)

CASP13: 20 targets (stage2)



Features

Node features

Scalar features {sin, cos} o {¢, 1, w}, where ¢, 1), w are the dihedral angles computed from
Ci—1, Ni, Ca;, Cj, and N4 .

The forward and reverse unit vectors in the directions of Car; 11 — Ca; and Cay;—; — Cay;,
respectively.

The unit vector in the imputed direction of C/3; — Caiﬂ This is computed by assuming
tetrahedral geometry and normalizing

1 2
S(nx <)/l xcllz = /S0 + )/l +cll

where n = N; — Ca; and ¢ = C; — Ca;. This vector, along with the forward and reverse
unit vectors, unambiguously define the orientation of each amino acid residue.

A one-hot representation of amino acid identity, when available.



Features

Edge features

The set of edges is £ = {e;_s; }ix; for all ¢, j where v; is among the k = 30 nearest neighbors of v,

as measured by the distance between their Ca atoms. Each edge has an embedding hgj %) with the
following features:

* The unit vector in the direction of Ca; — Coy;.

* The encoding of the distance ||Ca; — Cay||2 in terms of Gaussian radial basis functinnsﬂ

* A sinusoidal encoding of j — 7 as described in[Vaswani et al|(2017)), representing distance
along the backbone.




Model training

Protein design

d Network learns a generative
model

d Models the distribution for
each specific position

d Outputs the 20-way
probability

MQA

 Regression against the true
quality score (GDT-TS)

Learning rate 104to 103
Dropout 10-4to 101
probability

Number of graph |3 to 6
layer

MQA pairwise loss | 0 - 2
Epochs 100
Optimizer Adam

Input dimension

Node: 16 vectors
100 channels
Edge: 1 vector 32
channel

Batch size

1800 and 3000
residues for CPD
and MQA,
respectively




Performance evaluation

Computational Protein Model quality estimation
design (CPD) (MQA)
d Perplexity A Global and per-target

Pearson correlation
coefficients

O GDT-TS score
A Higher is better

 Lower is better

d Recovery: mean recovery of
100 sequences

A Higher is better



Performance evaluation: CPD

Perplexity Recovery %
Method Type Short Single-chain  All Short  Single-chain  All
GVP-GNN GNN 7.10 7.44 5.29 32.1 32.0 40.2
Structured GNN GNN 8.31 8.88 6.55 28.4 28.1 37.3
Structured Transformer GNN  8.54 9.03 6.85 28.3 27.6 36.4

Table 3: Performance on the CATH 4.2 test set and its short and single-chain subsets in terms of
per-residue perplexity (lower is better) and recovery (higher is better). Recovery is reported as the
median over all structures of the mean recovery of 100 sequences per structure. GVP-GNN performs
better than Structured Transformer and a variant of it, Structured GNN, in which we replaced the
attention mechanisms with standard graph propagation operations (see main text).



Performance evaluation: MQA

CASP 11 CASP 12
Stage 1 Stage 2 Stage 1 Stage 2
Method Type Glob Per Glob  Per Glob  Per Glob  Per

GVP-GNN GNN 084 0.66 0.87 045 0.79 0.73 0.82 0.62
3DCNN CNN 059 052 0.64 040 049 044 0.61 0.51

Ornate CNN 0.64 047 0.63 0.39 0.55 0.57 0.67 0.49
GraphQA GNN 0.83 063 0.82 0.38 0.72  0.68 0.81 0.61
VoroMQA  Seq 0.69 0.62 0.65 042 0.46 0.61 0.61 0.56

SBROD Seq 0.58 0.65 0.55 043 0.37 0.64 0.47 0.6l

ProQ3D Seq 0.80 0.69 0.77 044 0.67 0.71 0.81 0.60

Method Global Per-target
GVP-GNN 0.888 0.671
SASHAN 0.840 0.633
FaeNNz 0.810 0.650
CASP13 VoroMQA-A 0.744 0.595
VoroMQA-B 0.726 0.586
ProQ3D 0.847 0.660

MULTICOM-NOVEL  0.652 0.551
ProQ4 0.604 0.691




Ablation study

MQA CPD
CASP 11 Stage 2 CASP 12 Stage 2 CATH4.2 All

Modification Global Per-target Global Per-target Perplexity Recovery
None 0.87 0.45 0.82 0.62 5.29 40.2
MLP layer 0.84 0.36 0.79 0.59 1.76 30.6
Only scalars 0.84 0.38 0.83 0.59 7.31 324
Only vectors 0.56 0.16 0.57 0.39 11.05 23.2
No W, 0.86 0.41 0.81 0.60 5.85 37.1
GraphQA 0.82 0.38 0.81 0.61

Structured GNN - - - - 6.55 37.3




Conclusion

d GVP-GNN to learn both relational and geometric
representations

J Enhance the expressive power of GNN
 Posses the equivariant and invariance properties
J Demonstrated on MQA and CPD problems

 Future application: protein complexes, RNA
structure and protein-ligand interactions

d Code published and available at
d https://github.com/drorlab/gvp




