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Introduction:

- Important of designing and discovering new molecules

- The molecular discovery process usually proceeds in design-make-test-analyze
cycles, where new molecules are designed, made in the lab, tested in lab-based
experiments to gather data, which is then analyzed to inform the next design step.
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Goals to accelerate the DMTA cycles

GI. Learning strong generative models of molecules that can be used to sample novel

molecules, for downstream screening and scoring tasks

G2. Molecular optimization: Finding molecules that optimize properties of interest (e.g.
binding afhinity, solubility, non-toxicity, etc.).
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Problem: Synthesize

Can the designed molecules be synthesize ?
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Generating multi-step molecular synthesis routes
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Figure 2: An example of how we can serialize the construction of the DAG shown in Figure|1| with
the corresponding DAG at that point in the sequence shown for three different time-points in the grey
circles. The serialized construction sequence consists of a sequence of actions. These actions can be

Figure 1: An example synthesis DAG classified into belonging to three different types: (A2) building block molecular
for paracetamol [19] Note that we are identity, and (A3) connectivity choice. By convention we start at the building block node that is

ignoring some reagents, conditions and furthest from the final product node, sampling randomly when two nodes are at equivalent distances.
details of chirality for simplicity.
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Define a probabilistic distribution over DAG
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Actions involving with molecular graph

The model compute embeddings that also take

the structure of the molecular graph into account.

To compute molecular embeddings, the author
choose deep graph neural networks (GNN),
which allow to learn which characteristic of a
graph are important to the task.
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Autoencoder (DoG-AE)

(1) Molecular graph message passing (2) Synthesis graph message passing.

Initial node embeddings for the DAG are created
by running GNNs on node's molecular graphs

ii. Weighted sum to
form graph embedding

// I> i. Messages passed

i. Messages passed forward on DAG ii. Update node representations iii. Repeat!
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Figure 4: The encoder embeds the DAG of Graphs (DoG) into a continuous latent space. It does
this using a two-step hierarchical message passing procedure. In step 1 (Molecular graph message
passing) it computes initial embeddings for the DAG nodes by forming graph-level embeddings
using a GNN on the molecular graph associated with each node. In step 2 (Synthesis graph message
passing) a message-passing algorithm is again used, however, this time on the synthesis DAG itself,
passing messages forward. In our experiments we use GGNNs [45] for both message passing steps
(see the Appendix for further details). The final representation of the DAG is taken from the node
embedding of the final product node.




Basic generator DoG-Gen: molecular optimization via fine-tuning

- G2: performing molecular optimization via fine-tuning or reinforcement learning

- A model trained without latent space

- First pre-trained via maximum likelihood to match the training dataset
distribution p(M).

- Then for optimization, fine tune the weights of the decoder by sampling a large
number of candidate DAGs from the model, ranking them according to a target,
and then fine-tuning the model’s weights on the top K samples



Experiments results

Table 1: Table showing the percentage of valid molecules generated and then conditioned on this
the uniqueness, novelty and normalized quality [8! §3.3] (all as %, higher better) as well as FCD

decoding from 20k prior samples from the latent space.
Model Name Validity (1)  Uniqueness (1) Novelty (1) Quality (1) FCD ()

DoG-AE 100.0 98.3 929 93.5 0.83
DoG-Gen 100.0 ST 88.4 101.6 0.45

Training Data 100.0 100.0 0.0 100.0 0.21

SMILES LSTM [67] 94.8 95.5 74.9 101.93 0.46
CVAE [23] 96.2 97.6 76.9 103.82 0.43
GVAE [44 74.4 97.8 8.7 98.98 0.89
GraphVAE [72] 42.2 ST 96.1 94.64 13.92
JT-VAE [35] 100.0 99.2 94.9 102.34 0.93
CGVAE [47] 100.0 97.8 97.9 45.64 14.26

Molecule Chef [7] 98.9 96.7 90.0 99.0 0.79




The latent space of synthesis DAGs
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Figure 5: Using a variant of the DoG-AE model, as we randomly walk in the latent space we decode
out to similar DAGs nearby, unseen in training. Reactions and nodes that exist in our original dataset
are outlined in solid lines, whereas those that have been discovered by our model are shown with

dashed lines.




Optimization

Synthesize score (higher score bars occlude lower)
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Figure 6: The score of the best molecule found by the different approaches over a series of ten
GuacaMol benchmark tasks [8, §3.2], with the task name labeled above each set of bars. GuacaMol
molecule scores (y-axis) range between 0 and 1, with 1 being the best. We also use colors to indicate
the synthesizability score of the best molecule found. Note that bars representing a molecule within a

higher synthesizability score bucket (e.g blue) will occlude lower synthesizability score bars (e.g.

red). The dotted gray lines represent the scores of the best molecule in our training set.
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More experiments result

Tasks (left to right)
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Frac. Synthesizable (1) Synth. Score (1) Median # Steps () Quality (1)
DoG-Gen 0.9 0.76 4 0.75

Graph GA 0.42 0.33
SMILES LSTM 0.48 0.39

SMILES GA 0.29 0.25
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