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Introduction: 
- Important of designing and discovering new molecules

- The molecular discovery process usually proceeds in design-make-test-analyze 

cycles, where new molecules are designed, made in the lab, tested in lab-based 

experiments to gather data, which is then analyzed to inform the next design step.
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Goals to accelerate the DMTA cycles
G1. Learning strong generative models of molecules that can be used to sample novel 

molecules, for downstream screening and scoring tasks

G2. Molecular optimization: Finding molecules that optimize properties of interest (e.g. 

binding affinity, solubility, non-toxicity, etc.).
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Problem: Synthesize
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Can the designed molecules be synthesize ?



Generating multi-step molecular synthesis routes
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Define a probabilistic distribution over DAG
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Actions involving with molecular graph
- The model compute embeddings that also take 

the structure of the molecular graph into account.

- To compute molecular embeddings, the author 

choose deep graph neural networks (GNN), 

which allow to learn which characteristic of a 

graph are important to the task.
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Autoencoder (DoG-AE)
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Basic generator DoG-Gen: molecular optimization via fine-tuning
- G2: performing molecular optimization via fine-tuning or reinforcement learning

- A model trained without latent space

- First pre-trained via maximum likelihood to match the training dataset 

distribution p(M).

- Then for optimization, fine tune the weights of the decoder by sampling a large 

number of candidate DAGs from the model, ranking them according to a target, 

and then fine-tuning the model’s weights on the top K samples
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Experiments results
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The latent space of synthesis DAGs
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Optimization
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More experiments result
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Thank you
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