
Securing Container-based Clouds with Syscall-aware Scheduling
Michael V. Le
mvle@us.ibm.com
IBM Research

Yorktown Heights, NY, USA

Salman Ahmed
sahmed@ibm.com
IBM Research

Yorktown Heights, NY, USA

Dan Williams
djwillia@vt.edu

Virginia Tech, IBM Research
Blacksburg, VA, USA

Hani Jamjoom
jamjoom@us.ibm.com

IBM Research
Yorktown Heights, NY, USA

ABSTRACT
Container-based clouds—in which containers are the basic unit of
isolation—face security concerns because, unlike Virtual Machines,
containers directly interface with the underlying highly privileged
kernel through the wide and vulnerable system call interface. Re-
gardless of whether a container itself requires dangerous system
calls, a compromised or malicious container sharing the host (a
bad neighbor) can compromise the host kernel using a vulnerable
syscall, thereby compromising all other containers sharing the host.

In this paper, rather than attempting to eliminate host compro-
mise, we limit the effectiveness of attacks by bad neighbors to a
subset of the cluster. To do this, we propose a new metric dubbed
Extraneous System call Exposure (ExS). Scheduling containers to
minimize ExS reduces the number of nodes that expose a vulnera-
ble system call and as a result the number of affected containers in
the cluster. Experimenting with 42 popular containers on SySched,
our greedy scheduler implementation in Kubernetes, we demon-
strate that SySched can reduce up to 46% more victim nodes and up
to 48% more victim containers compared to the Kubernetes default
scheduling while also reducing overall host attack surface by 20%.

CCS CONCEPTS
• Security and privacy → Systems security; Software and
application security.

KEYWORDS
container, scheduling, system call, seccomp, co-location

ACM Reference Format:
Michael V. Le, Salman Ahmed, Dan Williams, and Hani Jamjoom. 2023.
Securing Container-based Clouds with Syscall-aware Scheduling. In ACM
ASIA Conference on Computer and Communications Security (ASIA CCS
’23), July 10–14, 2023, Melbourne, VIC, Australia. ACM, New York, NY, USA,
15 pages. https://doi.org/10.1145/3579856.3582835

This work is licensed under a Creative Commons Attribution International
4.0 License.

ASIA CCS ’23, July 10–14, 2023, Melbourne, VIC, Australia
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0098-9/23/07.
https://doi.org/10.1145/3579856.3582835

1 INTRODUCTION
In the ever expanding container cloud ecosystem, the inherent in-
teraction model between the containers and the underlying system
remains a security concern. Since containers are composed of pro-
cesses, they interact directly with the highly privileged host kernel
through the system call interface. The system call interface is wide:
to date, Linux includes over 340 system calls. Any system call that
contains a vulnerability could potentially be used to escalate privi-
leges or otherwise compromise the system. Some recent examples
of such exploit include the infamous Dirty COW vulnerability [12]
(CVE-2016-5195) or the recent Dirty Pipe vulnerability [37] (CVE-
2022-0847), Integer underflow vulnerability (CVE-2022-0185), and
the Waitid vulnerability (CVE-2017-5123). Thus, the security of
a container is intimately linked with the security of neighboring
containers on a host and what system calls those containers can
access and potentially exploit. Yet cloud providers strive to increase
container density to improve host utilization by multiplexing work-
loads from different users and tenants on the same set of physical
hosts, providing ample opportunities for distrusting containers to
become "bad neighbors."

One approach to improving the security of the host is to limit
the system call interface, and thus its attack surface. Mechanisms
that perform per-process system call filtering using seccomp [19]
or software specialization like Chisel [24] and FaceChange [21] can
restrict access to the kernel for a specific process. Similarly, host
or system-wide specialization approaches like kRazor [34] restrict
access to system calls used by containers on a host. However, they
are inadequate on their own as they do nothing to prevent bad
neighbor relationships from occurring in the first place.

In this work, we focus on exploiting the relationship between
container scheduling and system call profiles to practically improve
the overall security of container-based clouds. Specifically, we pro-
pose a greedy system call-aware container scheduler called SySched
that places containers based on their system call usage profile in
such a way that can minimize each container’s exposure to extra-
neous system calls on a host—system calls a container does not use
itself but can potentially be exploited to its own detriment. The key
to achieving this is the introduction of a new Extraneous System
call Exposure (ExS) metric that quantifies the amount of extrane-
ous system calls a container is exposed to. Rather than attempting
to eliminate system call-based compromises, a great challenge in
itself, our approach makes use of this metric to inform container
placement decisions to contain and limit the impact of such exploits.

812

https://doi.org/10.1145/3579856.3582835
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3579856.3582835
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3579856.3582835&domain=pdf&date_stamp=2023-07-10

ASIA CCS ’23, July 10–14, 2023, Melbourne, VIC, Australia Le et al.

To determine the feasibility of our approach, we analyzed system
call usage captured by sysdig from a representative set of container-
ized workloads that consists of 42 popular and highly-downloaded
container applications across 11 categories from Docker Hub. Our
analysis uncovers two key insights: (i) most applications only use
a fraction of system calls (9% - 37%) available on the host and (ii) as
little as 23% or as much as 99% of system calls are common between
different applications. These insights suggest that applications that
have similar system call profiles will have very few extraneous
system calls among them. If they can be co-located, then there is
opportunity for limiting the effectiveness of bad neighbors that
may exploit vulnerabilities in these extraneous system calls to a
subset of the cluster.

System call-based container co-location intuitively raises two
concerns: i) impact on performance and ii) facilitation of targeted
co-location attacks [15]. With respect to performance, we do not
envision our scheme being used solely for dictating container place-
ment as there are often many considerations such as performance
and utilization that must be taken into account when scheduling
workloads in the cloud. Our goal is to introduce a new security
dimension based on system calls to the existing container schedul-
ing schemes. How prominent SySched plays in the overall place-
ment decision is based on the priorities and scheduling goals of the
workload owner and cloud provider. As such, like other scheduling
schemes, SySched can be configured to have a range of impact
on other scheduling dimensions, from being the sole arbiter of
container placement decisions to taking over only after all other
placement constraints have been met. The trade-offs associated
with different policies must be considered by the cloud providers.

Targeted co-location attacks can be used to select victims in order
to launch additional attacks. Our scheme can potentially make such
attacks easier but they can be mitigated in certain situations as
we describe later in the paper (see Section 5). However, it should
be noted that existing widely deployed container schedulers are
already highly susceptible to such targeted co-location attacks [15]
and will require additional mechanisms to completely mitigate
which we leave for future work.

To evaluate our approach, we implemented SySched in Kuber-
netes, an open-source and widely deployed container orchestration
engine. We make the case that there is ample opportunity for reduc-
ing ExS, thus improving overall security in a cluster, by showing
that there can be up to 4x difference in ExS between the default
Kubernetes scheduler and a near-optimal, albeit unrealistic, offline
oracle scheduler. Our experimental evaluation demonstrates that
SySched can greatly improve the situation by reducing ExS by up
to 2x compared to the default Kubernetes scheduler. We show that
SySched can reduce up to 46% more victim nodes and up to 48%
more victim containers compared to the Kubernetes default sched-
uling. In addition, we are able to reduce the host attack surface of
a cluster by approximately 20% (20% less system calls are needed).
Furthermore, we empirically show that while scheduling for secu-
rity can impact performance, it is not always the case and heavily
depends on the workload.

Container schedulers in container orchestration engines such as
Kubernetes already make placement decisions based on resource
availability, high availability, and user-specified co-location con-
straints, but do not take into account the security implications of

Node 1

Kernel

Pod

Control
Plane

Ci

Pod

Cj

Per-container
Seccomp filter

Syscall

Container Node n

Kernel

Pod

Ck

Pod

Cl

Dangerous
Syscall

Figure 1: Anatomy of a typical container deployment

the resulting placement decisions. Of course, scheduling has been
used to separate tenants (e.g., Coke and Pepsi) on physically sepa-
rate hosts and scheduling applications on different cores to thwart
certain kinds of side-channel attacks. Academic research in the area
of security-aware schedulers has so far focused on VM scheduling
and use CVSS as the single risk metric to globally reduce [22, 35, 54].
Our work is the first to discuss and explore the opportunistic inter-
play between system call exposures and container scheduling.

In summary, this paper makes the following contributions:
• We identify limitations of existing system call filtering schemes
due to the bad neighbor problem and propose the use of con-
tainer scheduling to address them.

• We introduce a new container scheduling metric based on ex-
traneous system call exposures (ExS) and utilize it to design
our container scheduler scheme SySched.

• We implement a prototype of SySched as a scheduler plu-
gin in Kubernetes and evaluate its impact on security and
performance.

2 THE EFFECT OF SYSTEM CALLS ON
SECURITY OF CONTAINER-BASED CLOUDS

In Linux, containers are processes or groups of processes that expe-
rience a private view of system resources via kernel mechanisms
including namespaces and cgroups, despite potentially sharing the
kernel with other containers. In a container-based cloud, the com-
pute abstraction provided to customers are containers. Figure 1
depicts a typical, and our assumed, container-based cloud environ-
ment, such as one managed by Kubernetes. The cloud manages a
number of worker nodes, which could be physical or virtual ma-
chines. The control plane schedules user-supplied containers to run
on worker nodes. The unit of scheduling is typically a pod, which
consists of one or more related containers. In this work, we limit
our discussion to pods with one container and thus use the terms
pods and containers interchangeably.1 Importantly, each node runs
one instance of a kernel, so every container on a node—even from
mutually distrusting tenants—shares the kernel.

2.1 Sandboxing Containers
Mutually distrusting containers—either from one or multiple orga-
nizations—can share a host, and therefore a common system call
interface into the kernel. Concerns over neighboring containers ex-
ploiting a vulnerable system call to perform privilege escalation or

1Further discussion on the implications of multi-container pods appears in Section 5.

813

Securing Container-based Clouds with Syscall-aware Scheduling ASIA CCS ’23, July 10–14, 2023, Melbourne, VIC, Australia

container breakout have led the industry to consider container sand-
boxing techniques. For example, gVisor[48] and VM-based tech-
niques such as Firecracker microVMs[1] and Kata containers [27]
are being discussed as a possible replacement for containers due
to the promise of better isolation guarantees through specialized
application-level kernels or hardware-based mechanisms while
maintaining an equivalent level of performance.

Despite isolation improvements, these virtualization and user-
level kernel approaches have drawbacks such as application incom-
patibilities or requirements for separately maintained guest kernels
running on a limited set of supported CPUs and are ill-suited to
already-virtualized environments. We believe that to unlock the
full potential of container-based clouds, clouds where containers
run directly atop the host OS, will require overcoming security
concerns, and in this work, we offer ways to practically improve
on the state-of-the-art, which centers around system call filtering.

In particular, recent work has suggested that the kernel can be
protected from containers by reducing access to vulnerabilities
through system calls [51, 52]. As depicted in Figure 1, on a per-
container basis, mechanisms like seccomp can limit the system call
interface. Default per-container system call filters are typically too
permissive for fear of causing the containers to fail. Recent work
has investigated automatically deriving tighter, more application-
specific filters [8, 11, 18, 19]. Unfortunately, as we will describe next,
application-specific approaches are fundamentally unable to pro-
duce a safe container cloud due to the existence of bad neighbor(s).

2.2 Threat Model and Goals
We assume a large single or multi-tenant container-based cloud
environment as described above, in which isolation of containers
is desirable. We assume the cloud operator(s) and administrator(s)
are trustworthy and that application-specific system call filtering is
specified in advance for containers and enforced by the host kernel.

Further, we assume that some containers can be malicious by
deliberately exercising vulnerable system calls to exploit the host
kernel or can become malicious after being compromised by an
attacker through vulnerabilities that may exist in those containers.
These containers then may attempt to break out of containment by
using one or more vulnerable system calls, i.e., these containers be-
come bad neighbors. Note that we assume a malicious container can
specify any system call profile it chooses ahead of time; any escape
by a container must only use system calls in its profile. We place
other attack vectors such as vulnerabilities in a container’s own
code, including micro-architectural side channels, out-of-scope.

We assume a container that has compromised the kernel triv-
ially compromises all other containers on its host. However, we
assume that a compromise of the kernel on one node does not imply
compromise of kernels or containers on other nodes. Compromise
of another node must come from a malicious container on that
node through a vulnerable system call. Likewise, vulnerabilities in
container-based cloud platforms, including code/image repositories,
container runtime, and orchestration engines are out of scope.

Given this threat model, we identify three reasons that an appli-
cation-specific system call filtering approach alone cannot lead to
a safe container-based cloud:

Figure 2: System call similarity (%) between two containers
w.r.t. the container on the y-axis. Darker meansmore similar.

• Diverse system call usage: There is no one-size-fits-all
system call profile that is also tight or a comprehensive list
of dangerous system calls that all applications are able to
adhere to without compromising their correct execution.
Thus some tenants may run containers that use system calls
that (from another tenant’s perspective) jeopardize the host.

• Sharing of the privileged kernel: A compromised kernel
implies compromise of all containers on the host. Containers
that may have different system call profiles and may not
agree on what system calls should be avoided must implicitly
trust each other not to compromise the kernel through the
system calls available to them.

• Lack of control: Even if a user’s containers adhere to a
per-container filter to avoid a particularly risky system call
(e.g., one with a known CVE or history of CVEs), there is no
guarantee that other containers have adhered to the policy,
especially in a multi-tenant, container environment where
placement is completely abstracted away from users.

Since malicious containers have the ability to use vulnerable
system calls (as long as they are declared ahead of time) in our
threat model, our goal is not to prevent attacks, i.e., bad neighbors
may still compromise the kernel. Instead we take a holistic cluster-
wide approach and seek to contain the damage of attackers. To
this end, we articulate the following goals:

• (G1) Minimize the number of hosts in the cluster affected
by a malicious container escape via one or more vulnerable
system calls.

• (G2)Minimize the number of containers in the cluster affected
by a malicious container escape via one or more vulnerable
system calls.

2.3 Better Security through Scheduling
To better understand the limitations of an application-specific ap-
proach to system call filtering and motivate a cluster-wide schedul-
ing, we examine the commonalities and differences in system calls
across different applications.

814

ASIA CCS ’23, July 10–14, 2023, Melbourne, VIC, Australia Le et al.

We analyze the system call invocations of 42 popular and highly-
downloaded containers across seven categories from Docker Hub.
To gather the system call data, we ran a variety of workloads against
the containers and captured system calls using sysdig. Across all
42 containers, we found they used between 9% and 37% of the full
Linux system call interface of 335 calls. Our findings are in line with
related work that utilizes source-level static analysis to determine
system call usage (between 25% and 29% for the serving phase of
popular applications) [19] and a large scale binary analysis (30,398
binaries) showing a median of 26% [11].

We further analyze the system call similarity across the 42 con-
tainers, shown in Figure 2 (only shown for 25 applications for
readability. Each cell shows the commonality of system calls be-
tween two containers, represented by a percentage of common
system calls from the perspective of the container on the 𝑦 axis (i.e.,
w.r.t. the containers on the rows). In other words, the percentage
is computed as the size of the intersection of the system call sets
of the two containers out of the size of the system call set for the
container on the 𝑦 axis. For all containers, between any two, we
observe as little as 23% similarity to as much as 99% similarity with
another container. In addition, we also observe diversity in system
calls associated with kernel CVEs and the use of those system calls
in the 42 containers. For example, we analyzed a collection of 50
kernel-based CVEs (2008-2018) and found they are associated with
59 unique system calls and some of these system calls are used by
almost all of the containers while others are only used by a few.

The diversity of system calls confirms that tight, application-
specific system call filters will vary from application to application
and that access to/avoidance of vulnerable system calls will also
vary between them. Furthermore, when considering the impacts
of malicious containers in our threat model, placement matters.
Strictly consolidating containers that require a vulnerable system
call on fewer nodes will reduce the number of nodes at risk for
compromise (G1). Similarly, given our threat model, strictly consol-
idating containers that do not require a vulnerable system call on
other nodes protects them from the risks of a shared kernel (G2).
Additionally, system call usage-based container placements lead to
an overall attack surface reduction on hosts and improved isolation
of the container cloud (see Section 4).

3 SYSCALL-AWARE SCHEDULER DESIGN
Given our threat model, malicious containers may compromise
the kernel and other containers on the host through one or more
vulnerable system calls. As cloud providers implement container
scheduling, we do not know which system calls may be vulnerable,
nor which containers may be malicious. But the scheduler can still
reduce the aggregate system call attack surface on each host.

Our key insight is that broad system call attack surfaces are
a tragedy of the commons: container developers face no conse-
quences for utilizing a broad set of potentially vulnerable system
calls or specifying them in a syscall filtering policy, nor do they gain
rewards for minimizing their system call usage. Simply scheduling
to minimize system call attack surface on the host does not address
this concern.

Instead, we introduce a concrete incentive to container devel-
opers, namely that they implicitly agree that system calls they

themselves use are low risk: they are deemed unlikely to contain
vulnerabilities now or in the future. It follows that such a container
will have no safety concerns being co-located with other containers
that use those (or a subset of those) system calls. Containers that use
fewer system calls or those less likely to encounter vulnerabilities
will be co-located with others that have made similar assessments
of system call safety and adhered to a corresponding system call
filtering policy.

To capture this incentive in scheduling, we introduce a new
single-valued metric used to quantify the Extraneous System call
exposure (𝐸𝑥𝑆) of a container on a node. Informally, 𝐸𝑥𝑆 captures
the additional system calls used by other containers on a node that
the container itself does not use and thus has not implicitly agreed
to be low risk. In this way, 𝐸𝑥𝑆 reflects the potential “danger” a
container must face when scheduled on a node.

3.1 Scheduling Metrics
In this work, we assume that the system call profiles of pods have
explicitly been made available to the scheduler, possibly automat-
ically pre-generated through analysis (e.g., dynamic such as via
the Security Profiles Operator in Kubernetes) and/or static analy-
sis [8, 11, 19], and explicitly specified in a configuration file of a
pod (e.g., a seccomp profile).

We assume that all nodes are running identical host operating
systems with the same system calls on each node, numbered 1, ..., 𝑀 .
Let 𝑺𝑛

𝑖
represent the binary vector of enabled system calls for con-

tainer 𝑖 on node 𝑛: 𝑺𝑛
𝑖
= [𝑠1, 𝑠2, ..., 𝑠𝑀], where 𝑠𝑘 = 1 when the 𝑘-th

system call is enabled, and 𝑠𝑘 = 0 otherwise. Practically, 𝑺𝑛
𝑖
mirrors

a typical seccomp policy for the corresponding container.
To find the systems calls that are enabled a given node 𝑛, we

perform a logical 𝑜𝑟 (union) of the enabled system calls across all
containers within that node:

𝑺𝑛 =
⋃
𝑖

𝑺𝑛𝑖

We can now compute the vector, 𝑬𝑛
𝑖

= [𝑒𝑛1 , 𝑒
𝑛
2 , ..., 𝑒

𝑛
𝑀
], which

represents the extraneous systems calls for container 𝑖 on node 𝑛:

𝑬𝑛𝑖 = 𝑺𝑛𝑖 ⊕ 𝑺𝑛

Some system calls may be "riskier" than others such as system
calls that are known to be critical in developing exploits or are
themselves associated with CVEs that have since been fixed, hence
historically vulnerable [18, 19, 26]. The presence of these system
calls does not mean imminent danger but may justify stronger
isolation measures. Weights can be used to inflate the ExS scores
when these risky system calls are encountered, thereby, providing a
mechanism to control the degree of isolation. Increasing weights on
some system calls can result in more aggressively co-locating work-
loads using those system calls together while pushing others away
to curtail the impact in the event those system calls get exploited.
For system calls that are known to be imminently vulnerable, direct
quarantining measures of the associated workload such as using
existing affinity/anti-affinity mechanisms may be the better choice.

Let𝑾 = [𝑤1,𝑤2, ...,𝑤𝑀] be the set of riskiness weights associ-
ated with each system call (more below). As mentioned earlier, we
are interested in computing a score, 𝐸𝑥𝑆 , that reflects the extrane-
ous system call exposure. For container 𝑖 on node 𝑛, this score can

815

Securing Container-based Clouds with Syscall-aware Scheduling ASIA CCS ’23, July 10–14, 2023, Melbourne, VIC, Australia

then be computed as the dot product between 𝑬𝑛
𝑖
and𝑾 :

𝐸𝑥𝑆𝑛𝑖 = 𝑬𝑛𝑖 ·𝑾 = 𝑒𝑛1 ×𝑤1 + 𝑒𝑛2 ×𝑤2 + ... + 𝑒𝑛𝑀 ×𝑤𝑀

When scheduling, we use the 𝐸𝑥𝑆𝑛
𝑖
score as one of the basis

on which to decide which candidate hosts to place an incoming
container. By using the 𝐸𝑥𝑆𝑛

𝑖
score, it allows us to answer a key

question during scheduling: how does the placement of a new
container on a host impact that container’s 𝐸𝑥𝑆𝑛

𝑖
score as well as

the scores of all current running containers on that node? This
node-wide 𝐸𝑥𝑆𝑛 score can be calculated by first assuming the new
incoming container is placed on the target node and then calculating
the 𝐸𝑥𝑆𝑛 score for each container on that node and adding those
scores together:

𝐸𝑥𝑆𝑛 =
∑︁
𝑖

𝐸𝑥𝑆𝑛𝑖

It is useful to also calculate the 𝐸𝑥𝑆 score for an entire cluster as
a way to evaluate howwell syscall-aware scheduling can reduce the
extraneous system call exposure of all the nodes in that cluster. The
cluster-wide 𝐸𝑥𝑆 score for a cluster with 𝑁 nodes is the summation
of the 𝐸𝑥𝑆𝑛 score across all nodes:

𝐸𝑥𝑆 =
∑︁
𝑛

𝐸𝑥𝑆𝑛

Weights: Each weight𝑤1 ...𝑤𝑀 in𝑊 is a composite function:

𝑤𝑘 = 𝑓 (𝑤𝑘) =

0, if𝑤𝑘 = −1
1, if𝑤𝑘 = 0
𝑤𝑘 ∗ 𝑠, if𝑤𝑘 > 0

𝑤𝑘 is a user-provided value representing the riskiness of the 𝑘-th
system call. When𝑤𝑘 is -1, the 𝑘-th system call is not considered
as extraneous, hence weight𝑤𝑘 = 0.𝑤𝑘 = 0 means no special con-
sideration for the 𝑘-th system call. If all system calls are treated
equally, then 𝑾 = [1, 1, ..., 1]. To allow the risk values to affect
placement decisions, 𝑠 is provided as a system maintained average
of the differences of 𝐸𝑥𝑆𝑛 (node-wide score) among nodes in the
cluster. This value ensures the risk values actually affect the result-
ing 𝐸𝑥𝑆𝑛 score enough to change the ranking order of candidate
nodes during scheduling. Hence, 𝑤𝑘 > 0 expresses the level of
aggressiveness of the isolation of the 𝑘-th system call based on its
risk factor. For example,𝑤𝑘 = 2 would suggest that the presence of
the 𝑘-th system call would result in a relatively large 𝐸𝑥𝑆𝑛 score,
thereby making nodes hosting containers utilizing the 𝑘-th system
call to be unlikely a top candidate node. In Section 4, we demon-
strate how weights can be used to better isolate containers with
known-risky system calls. We also discuss approaches to determine
the weights of risky system calls in Section 5.

3.2 Scheduling Scheme
We explain how the ExS metric fits into the Kubernetes schedul-
ing scheme below. For a given incoming container, the Kubernetes
scheduler first finds the set of feasible nodes by filtering the avail-
able nodes based on scheduling requirements and policies (e.g.,
resource constraints, affinity, etc.). After the filtering phase, the
set of feasible nodes needs to be ranked. This is done by passing

Node 1

Kernel

(a)

5
1 2

7 8
6
9

3
4

SySched

0 0

C1 1 2 3 5

Node 2

Kernel

5
1 2

7 8
6
9

3
4

Node 1

Kernel

(b)

5
1 2

7 8
6
9

3
4

SySched

7 0

C1

C2 4 7 8

Node 2

Kernel

5
1 2

7 8
6
9

3
4

Node 1

Kernel

(c)

5
1 2

7 8
6
9

3
4

SySched

2 7

C1

C3 1 3 5 9

Node 2

Kernel

5
1 2

7 8
6
9

3
4

C2

Node 1

Kernel

(d)

5
1 2

7 8
6
9

3
4

SySched

C1

C3

Node 2

Kernel

5
1 2

7 8
6
9

3
4

C2

Figure 3: Step-by-step illustration of the syscall-aware sched-
uling using ExS. Numbers on the arrows indicate the 𝐸𝑥𝑆𝑛

score. The numbers inside each gray box below a host indi-
cate the union of system calls used by all containers on that
host. The numbers inside rectangular boxes of containers
(C1, C2, and C3) indicate the system calls the containers use.

the incoming container along with a list of feasible nodes as in-
puts to different scoring mechanisms, SySched being one among
potentially many. The cloud administrator can set weights to these
mechanisms to underscore the impact of one mechanism over an-
other. All these scoring mechanisms work together to compute the
final scores to rank feasible nodes for the incoming container and
works as follows. Each mechanism computes its own score for each
feasible node. Then, the scores gets normalized and is combined
based on the mechanism’s weight to produce a final score w.r.t a
feasible node. In the case of SySched, it computes its score using
the 𝐸𝑥𝑆𝑛 metric for each feasible node and returns the reverse nor-
malized score, i.e., a lower ExS score yields a higher normalized
score. The Kubernetes scheduler then sorts the feasible nodes based
on the final scores, and selects the node with the highest score. If
there exist multiple nodes with the same high score, the scheduler
randomly selects a node from these same-scored nodes. If no feasi-
ble node is available, the scheduler places the incoming pod in a
queue to wait for feasible nodes to be available.

Figure 3 illustrates how our scoring impacts placement decisions.
To simplify, we consider two feasible nodes (Node 1 and Node 2)
and the raw ExS score as the sole factor for ranking the nodes. In
practice, our normalized ExS scores may be combined with other
scoring mechanisms to rank feasible nodes. The figure shows the
placement of three containers (𝐶1,𝐶2, and𝐶3) in Node 1 and Node
2. The numbers inside a pod indicate the system call profile of the
pod, i.e., the profile for 𝐶1 is 1, 2, 3, 5, 𝐶2 is 4, 7, 8, and 𝐶3 is 1, 3, 5, 9.

Initially, to schedule container 𝐶1, the ExS scores for both Node
1 and Node 2 are the same (i.e., 0), since there are no containers
running on the nodes (Figure 3(a)). Thus, we randomly pick one of
the two nodes, Node 1 in this case, and updates Node 1’s system
call usage list using 𝐶1’s system call profile (Figure 3(b)). When
container 𝐶2 arrives to be scheduled, our plugin computes the
ExS scores 7 and 0 for 𝐶2 w.r.t. Node 1 and Node 2, respectively
(Figure 3(b)). In this case, the plugins ranked Node 2 over Node 1
since Node 2 has a lower ExS score (i.e., higher normalized score).
Figure 3(c) shows the updated system call list for Node 2. This
process repeats for all incoming containers. After all containers are
placed, the cluster-wide ExS score in this example is 12, i.e., 𝐸𝑥𝑆1
is 5 and 𝐸𝑥𝑆2 is 7, where 1 and 2 are node numbers.

816

ASIA CCS ’23, July 10–14, 2023, Melbourne, VIC, Australia Le et al.

Kubernetes Control Plane

Filter

Feasible
nodes

Ranked
nodes Syscall-

aware plugin
Score

Place
pod

K8 default
scheduler pod

SySched
scheduler pod

Pod to be
scheduled

API
Server

podPod

SPO’s
Seccomp

Profile CRD

Figure 4: Kubernetes scheduling flow and the syscall-aware
scheduling plugin. Both the default and SySched scheduler
run in tandem as pods on the master node.

Figure 3 also highlights the opportunities not only for reducing
the exposure to extraneous system calls (i.e., ExS score) but also
the node’s attack surface. If 𝐶3 had been scheduled on Node 2
instead of Node 1, then Node 2 would have a total of 7 system calls
"open" (1, 3, 4, 5, 7, 8, 9), instead of only 3 system calls under the
SySched approach. We further demonstrate this phenomenon with
real kernel CVEs in Section 4.

3.3 Implementation
We implemented a prototype of our scheduler for Kubernetes 2. In
Kubernetes, the scheduler is extensible and supports a plugin archi-
tecture model where new features can be added by implementing
plugins that extend scheduler specific API extension points. These
plugins are then compiled into the scheduler.

The SySched Scheduler Pod. Figure 4 shows the basic framework
of Kubernetes’ scheduler and our additions to implement the syscall-
aware scheduling. In short, we developed a new plugin to implement
the scoring extension API point in the Kubernetes scheduler while
leaving other filters and scoring plugins intact. We leverage existing
filtering and scoring operations of the Kubernetes scheduler to
handle other aspects of pod placement such as spreading the pods
and ensuring resource availability.

Our scheduler exists in tandem with the default scheduler in
Kubernetes. Specifically, it is run as a separate pod alongside the
default scheduler’s pod in the Kubernetes environment. We de-
ploy our scheduler in the Kubernetes master node but it can run
anywhere in the cluster. In our implementation, the name of our
syscall-aware scheduler or the default scheduler can be specified in
each pod’s configuration file for ease of experimentation. Kuber-
netes will invoke the named scheduler to perform placement.

Our plugin consists of two main components: 1) a lightweight
in-memory state store that stores the current mapping of nodes
to pods, and 2) mechanisms for obtaining system call sets used by
pods and calculating ExS scores. The state store operates as a thread
that monitors pod lifecycle events (e.g., creation, stop, destruction,
run) to track the location of running pods in the cluster and update
its internal mapping. While the entire pod placement state can be
retrieved dynamically from the API server, it is expensive to do so
for every scheduling event. Therefore, we opt to maintain this state
internally within our scheduler.

2We are in the process of open sourcing our code. https://github.com/kubernetes-
sigs/scheduler-plugins/tree/master/kep/399-sysched-scoring

Table 1: Applications used in the evaluation

Type Application Name
OS alpine, centos, ubuntu, busybox
FTP Server proftpd, vsftpd
Web Server lighttpd, cherokee, httpd, nginx, hiawatha, thttpd, nodejs

Database mysql, postgres, mongodb, mariadb, percona, influxdb,
elasticsearch

Storage redis, memcached
Content management drupal, wordpress, ghost
DevOps jenkins, maven, gcc, gradle
Messaging system rabbitmq, nats, lightstreamer
Language/compiler python, golang, ruby, gcc, openjdk
Container management docker, docker-registry
Other vault, zookeeper, nextcloud

To compute the ExS scores for pods, our plugin retrieves pods’
system call sets from their seccomp profiles via the Security Pro-
files Operator (SPO [31]). SPO allows the creation and retrieval of
seccomp profiles as Custom Resource Definitions (CRDs). We rely
on the SPO to generate and bind seccomp profile CRDs to the pods.

Determining System Call Policies. In this work, we use both
dynamic and static container profiling approaches to obtain system
call information for generating seccomp profiles. For dynamic pro-
filing, the applications are exercised by their respective workload
generators (discussed in Subsection 4.1). We capture the system
calls (using sysdig [46]) from the moment a container launches
the application (capturing the application’s initialization phase) to
the end of the benchmark run. We combine the system calls in both
phases to generate the dynamic seccomp profiles of the respective
container. For static profiling, we rely on tools from Confine [18] to
identify all the necessary binaries in a containerized application and
extract all reachable system call invocations from those binaries.

4 EVALUATION
We present results that demonstrate the efficacy of our approach.
Primarily, we seek to answer the following questions:

• how well can SySched reduce ExS?
• how well does SySched achieve our security goals?
• how likely is performance negatively impacted by SySched?

4.1 Experimental setup
We deploy Kubernetes version 1.23 in a cluster of VMs. All the VMs
run Ubuntu 18 (Linux kernel v4.15) and are of type Libvirt/KVM
hosted on a bare-metal server with 96 CPUs and 376GB of mem-
ory. Each VM has 8 VCPUs and 8GB of memory and utilizes virtio
devices. The VMs’ VCPUs are pinned to their respective set of phys-
ical CPUs to reduce contention and instability of the performance
measurements. Vagrant is used to automate the creation or destruc-
tion of the VMs and deployment of the Kubernetes runtime. When
compared to available cloud resources, this setup allows finer con-
trol over physical resource allocation to the VMs and networking
topology, providing a more stable environment for measurements.

To select our experimental application set, we focused on Docker
Official images which are around 170 images out of roughly 2,500
publicly available images that we could obtain download statistics.
These 170 images comprise greater than 61% of all image down-
loads. Out of these official images, we selected 42 images across

817

https://github.com/kubernetes-sigs/scheduler-plugins/tree/master/kep/399-sysched-scoring
https://github.com/kubernetes-sigs/scheduler-plugins/tree/master/kep/399-sysched-scoring

Securing Container-based Clouds with Syscall-aware Scheduling ASIA CCS ’23, July 10–14, 2023, Melbourne, VIC, Australia

11 categories (Table 1) comprising ∼90% of all the downloads of
official images. We also included in this 42 images a few images that
are not in Docker Official images to expand the types of application
categories. We believe our selection criteria is reasonably reflective
of the types and varieties of containers deployed in the real-world.

We generate a seccomp profile for each of the containerized ap-
plications from their extracted system call profiles (Subsection 3.3).
For dynamic system call extraction, we use the following work-
load generators to emulate typical activities performed by those
applications. Specifically, we use ftpbench [45] for FTP servers,
wrk [50] for web servers, sysbench [2] for relational databases, perf-
test [40] for rabbitmq, nats-bench [13, 14] for NATS, lightstreamer
builtin demo [36], YCSB [7] for non-relational databases and stor-
age, influxdb-comparisons [25] for InfluxDB and ElasticSearch, zk-
smoketest [39] for ZooKeeper and UnixBench [28] for OS contain-
ers. Additionally, we created custom workload generators for the
remaining applications for browsing and creating content for con-
tent/secret/ DevOps management systems and compiling/building
projects from source. We discuss the details of workload generators
in the Appendix (A.1). Obtaining precise and concise system call set
is a known challenge and we discuss more on this issue in Section 5.

For experiments described below, we deploy 3 instances of each
of the 42 applications for a total of 126 pods. We automated the
pod submission process to scale experiments. In each run of an
experiment, we submit all 126 pods in sequential but random order
and wait until all pods are in a “run” state before recording the
placement of pods and computing the respective metrics being re-
ported. We run these experiments for different numbers of feasible
nodes in a cluster, and for a particular number of feasible nodes,
we repeat the experiments 10 times. Unless noted otherwise, no
special weights are applied to the system calls, i.e.,𝑾 = [1, 1, ..., 1].

We use numbers of feasible nodes instead of cluster size to em-
phasize the fact that regardless of the cluster size, the number of
actually available nodes only matters to our scheme for scheduling
as some fraction of nodes will likely be used for scheduling contain-
ers with other higher priority scheduling goals. Providing a range
of feasible nodes give a better sense of the range of benefits vs. cost.

4.2 Estimating Optimal ExS Reduction
Before presenting the results, we discuss how to compute, in an
ideal situation, the best (lowest) ExS scores that can be obtained
when scheduling is the sole means used for affecting the scores. To
do so, we employ an offline scheduling scheme where the scheduler
has prior knowledge of all containers to be scheduled. While not
practical for real-world deployments, this approach is useful to put
the experimental results into perspective. Since obtaining optimal
placements is not feasible (NP-hard), we approximated optimal
placements by selecting the best outcome from multiple rounds
of four clustering algorithms: agglomerative, birch, k-means, and
mini-batch k-means. These algorithms utilize an ExS-based distance
formula (Subsection 3.1) to minimize the cluster-wide ExS score.

4.3 Reducing ExS
To evaluate how well SySched reduces ExS, in addition to the oracle
ExS, we compare SySchd to the default scheduler in Kubernetes. For

the default scheduler, we rely on the scheduler configuration and
policies specified at the time of installing and setting up Kubernetes.

Figure 5 shows the overall cluster-wide ExS score for different
size clusters (5 to 42 nodes). Resource constraints prevent us from
successfully deploying 126 container instances in a cluster with less
than 5 nodes. This cluster-wide score, as explained in Subsection 3.1,
gives a high-level summation of the amount of exposures each
container experiences on each node across the entire cluster. As
can be seen from Figure 5(a), the offline dynamic case (computed
with dynamic system call profiles) goes from around 6000 ExS score
in a five node cluster to zero in a 42 node cluster. This is because in
the best case, all three instances of an application get placed on the
same node. Since we have 42 nodes for 126 instances, each node gets
exactly three instances of an application, which results in a zero ExS
score. Of course, for an online scheduling scheme with no system-
call aware metric like the default Kubernetes scheduler, the cluster-
wide ExS score is much worse. As shown in Figure 5(a), there can
be around a factor of four difference in the amount of extraneous
system calls exposed to containers between the offline and the
defaultKubernetes scheduler. However, by adding our syscall-aware
scheduling scheme (i.e., SySched) into the Kubernetes scheduler,
the ExS score is reduced by more than half for the dynamic case,
coming closer to offline. The reduction is more pronounced as the
number of nodes increases because the number of applications in
our experiments is fixed. This means that the scheduler has more
choices to optimize the placements of the containers, yielding better
results. As such, there is an important relationship between number
of nodes and container instances. The improvement in ExS score
over the default scheduler is the greatest between 20–25 nodes and
maintains that improvement as the cluster size increases. This ratio
of containers to nodes and the mix of containers and their system
call usage profiles can be important in practice to guide cluster
sizing and container admission controls to maximize benefits from
using security-aware scheduling schemes such as ours.

To determine whether the results are sensitive to the dynamic
benchmark-driven system call profiles we obtained, we also per-
formed the same experiments using seccomp profiles obtained
through static analysis described in the Confine work [18]. Most of
the system call profiles generated by Confine have roughly 2.5 times
more system calls and the number of system calls across different
applications are closer together compared to the ones generated by
our dynamic approach (see Table 3 in Appendix). This is because
Confine extracts all system calls reachable from binaries executed
in the container, regardless if they are actually used during runtime.

Nevertheless, despite the significantly larger system call profiles,
we observed significant ExS reduction trends (up to 51%) by SySched
compared to the default with Confine generated system call profiles
(Figure 5(b)). Also, our scheme reduced the gap between offline and
default by around one-third. However, the overall improvement is
less than in the dynamic case due to the smaller variation of system
call numbers leading to less room for improvement.

4.4 Security Benefits
Intuitively, our scheduling scheme minimizes the ExS score for all
containers throughout a cluster by co-locating containers that have

818

ASIA CCS ’23, July 10–14, 2023, Melbourne, VIC, Australia Le et al.

(a) Cluster-wide ExS score using dynamic system call profiles (b) Cluster-wide ExS score using static system call profiles

Figure 5: Average cluster-wide ExS score across runs (the lower, the better) using system call profiles extracted through (a)
dynamic analysis (Sysdig [46]) and (b) static analysis (Confine [18]).

similar system call usage. This leads to the clustering of containers
that utilize a specific set of system calls while pushing away con-
tainers with differing system call sets. Such clustering has security
benefits as we discuss below.

Minimizing victim nodes and victim containers.We analyze
how the reduction in ExS translates to achieving our two main
goals stated in Subsection 2.2: (G1) minimizing the number of hosts
and (G2) the number of containers in a cluster affected by one or
more malicious container escapes via vulnerable system call(s).

To compute the number of victim nodes and victim containers
minimized by our scheme, we first consider one or more containers
as malicious. Then we determine the victim nodes by identifying all
the nodes where an instance of the malicious containers are present.
We also determine the number of neighbors of the malicious con-
tainers, i.e., the victim containers. This is akin to discovering a
CVE associated with a system call used by a deployed container
in real-life and seeing the impact of the CVE on the cluster with
respect to the container scheduling schemes.

To examine the impact, we utilized 50 historically exploitable
kernel CVEs (Table 4 in the appendix) and the system calls that can
be used to reach the vulnerable kernel code reported in [18, 19].
We selected these CVEs as they have been shown to be most likely
associated with system calls used by our application set. Specifically,
out of the 50, 40 CVEs are associated with system calls that are
present in at least one of our 42 applications. There are 23 CVEs
that can be reached by at least 30 applications through their system
calls. One CVE impacts 14 applications. Each of the remaining CVEs
impact a handful of applications ranging from 2–7.

Figure 6 shows the improvement of our scheme (with dynamic
system all profiles) over the default scheduler in reducing the (a)
number of nodes and (b) number of containers exposed to the
aforementioned CVEs. The left-hand side heat map of Figure 6
shows for each of the 40 CVEs, the difference in the number of nodes
that have the system calls associated with the CVE in question (i.e.,
victim nodes) between the default scheduler and SySched. The right-
hand side heat map shows the reduction of victim containers. Any
positive difference (light gray to black cell) shows the effectiveness
of our scheme for reducing the number of victim nodes or victim
containers for that CVE. Cell values with zeros (i.e., white color)
indicate no improvment by SySched.

Overall, as can be seen in Figure 6(a), our scheme reduces more
victim nodes than the default for most CVEs. Compared to the de-
fault, our scheme can reduce the victim nodes up to 46% more (w.r.t.
the total feasible nodes). However, the majority of the reduction is
between one and five nodes more than the default. The improve-
ment is more pronounced for some CVEs, especially where a set
of applications with similar system call profiles have one of these
CVEs. For example, lighttpd, nginx, redis, ghost, and thttpd
share similar system call profiles and have a common CVE, e.g.,
CVE-2014-7970. We also observed no difference for 13 CVEs such as
CVE-2008-3527, CVE-2009-0745, CVE-2010-4243, CVE-2010-4346,
and so on. We omitted these 13 CVEs from the figure due to space.
The reason for the low/no improvement for some CVEs is their
prevalence in almost all applications under evaluation. As a result,
without additional nodes in the cluster, there is no room to isolate
the problematic containers having those CVEs.

We observe a similar pattern in reducing the number of victim
containers. Figure 6(b) shows that SySched can reduce up to 48%
more victim containers than the default. The reduction here is also
more pronounced in a cluster when similar containers are malicious.
For example, mariadb, mysql, and percona have a common CVE
(i.e., CVE-2010-3066) where we have observed the reduction of
up to 45 more victim containers. Again, some CVEs have low or
no improvement due to their prevalence in many containers as
discussed above.

Our scheme also shows improvement compared to the default
scheme using statically generated system call profiles. Specifically,
our scheme is able to reduce up to 32% more victim nodes and up
to 25% more victim containers than default. Due to space limitation,
the graphs can be found in the Appendix (Figure 8). The reduction is
less than the reduction obtained using dynamic system call profiles
because the statically generated profiles contain a larger number
of system calls and smaller variation in system call numbers across
different applications resulting in less chance for optimal placement.

Impact of weights. Thus far, we have performed the scheduling
experiments without considering any emphasis or weights on dif-
ferent system calls. To provide examples of how weights can impact
container placement, we selected two historically vulnerable system
calls, madvise and pivot_root, associated with CVE-2017-18208
and CVE-2014-7970, respectively. For each system call, we apply

819

Securing Container-based Clouds with Syscall-aware Scheduling ASIA CCS ’23, July 10–14, 2023, Melbourne, VIC, Australia

(a) Reduction of victim nodes (b) Reduction of victim containers

Figure 6: Kubernetes default scheduler vs. SySched (with dynamic system call profiles) in terms of reducing the number of
(a) victim nodes and (b) victim containers for a particular CVE. Each cell represents how many additional victim nodes or
containers SySched can reduce compared to the default. Positive cell values (gray to black colors) indicate improvement. The
white color indicates no improvement.

(a)

(b)

Figure 7: Impact of weights on vulnerable node reduction for
(a) CVE-2017-18208 and (b) CVE-2014-7970.

different weights and observe their impact on reducing the number
of vulnerable nodes as the number of feasible node is varied. These
two CVEs are chosen due to their presence in 30 and 14 unique
applications, respectively, to compare scenarios where relatively
large and small numbers of containers are available for exploitation.

We used three different weights for our experiments: 𝑤𝑘 = 1,
2.5, and 5 with 𝑠 value being 100 (empirically determined based on
observing the average change in the ExS scores among the different
cluster sizes). Note that the point of this analysis is to determine
whether, and by how much, the weight has any impact on reducing
vulnerable nodes. Hence, we only show results for cases using
dynamic system call profile extraction. A discussion on approaches
for weight determination based on risk assessment is in Section 5.

Figure 7 shows our results. We include the case with a weight
of 0, i.e.,𝑤𝑘 = 0, for comparison. As can be seen in Figure 7(a) and
(b), increasing the weights on the problematic system calls cause
the associated pods to concentrate on fewer nodes (as no pods
without the system calls will want to be associated with them), thus
reducing the overall number of vulnerable nodes for that specific
CVE in the cluster. However, the larger weight has less impact on
vulnerable node reduction as the smaller weight had potentially
reached the optimal placements.

Certainly, putting weights on some system calls will put pressure
on the scheduler to co-locate containers that normally would be
spread out leading them to possibly be more susceptible to addi-
tional vulnerable system calls. Hence, we anticipate our weight
mechanism to be used to better isolate one set of "risky" system
call at a time.

Host attack surface area. Reducing exposure to extraneous sys-
tem calls by co-locating containers with similar system call profiles
intuitively leads to the reduction of unblocked/open system calls on
a node. Our results show that SySched, by virtue of scheduling, can
reduce host kernel attack surface by up to ~20% when the cluster
size is between 38 and 40 for dynamically generated system call
profiles and up to ~10% with statically generated profiles. Detailed
result graphs can be found in the Appendix (Figure 9).

4.5 Performance Impact
In practice, our scheduler does not work in isolation but in tandem
with other scheduling plugins that handle workload and resource
balancing. As mentioned earlier, we assume workloads that have
strict QoS requirements are placed separately, using higher priority
scheduling policies and the remaining workloads that do not have
such requirements are left to be scheduled with our scheme using
the remaining feasible nodes in the cluster. Nevertheless, it is still of

820

ASIA CCS ’23, July 10–14, 2023, Melbourne, VIC, Australia Le et al.

Table 2: Application throughput with standard deviation
across different container placement configurations. Reduc-
tion is from baseline. The last column indicates whether
single placement configuration performs worst than mixed.

App baseline mixed single mixed
reduction

single
reduction

impacted
negatively?

mysql1 14569±212 2834±121 7465±37 81% 49% no
nginx1 22056±547 9306±359 14101±140 58% 36% no
proftpd1 72±0 66±1 64±1 8% 12% yes (minor)
rabbitmq1 122649±2015 124463±1327 66304±1336 -1% 46% yes
mongodb1 6399±74 2111.16±254 2589±75 67% 60% no
memcached1 7045±412 4574.91±857 7081±168 35% 0% no
influxdb1 43.74±1 27.24±3.5 12.63±0.23 39% 70% yes
nodejs1 14892±119 10092.13±1188 15010±175 32% -1% no

interest as part of the security vs performance trade-off, to evaluate
whether our scheme can lead to degraded container performance
by causing excessive resource contention in both the kernel and
hardware levels.

In a cluster with many different types of workloads and applica-
tions that are possibly distributed, there can be many factors that
impact the performances of containers. For this study, we only focus
on assessing whether the placement decisions of our scheduling
scheme can negatively impact performance.

To do this assessment, we select two sets of applications with
each set having four applications that span different application
classes. The first set contains: mysql, nginx, proftpd, and rabbitmq.
The second set contains: influxdb, memcached, node.js, and mon-
godb. Next, we find the baseline performance, in terms of through-
put, of these applications to understand their performance charac-
teristics free from any resource contention by doing the following.
Each application is deployed in a VM by itself running inside a pod,
and on a separate isolated VM, we run the respective workload
generator to stress the application (see Subsection 4.1).

The key placement outcome that our scheme may produce is
the placement of many container instances of a single application
onto the same node to yield the best ExS score. Existing container
schedulers may not have this type of outcome. Thus, we compare
our placement configuration to a more typical placement config-
uration where a node contains a mixture of different application
instances. We refer to the former configuration as single and the
latter as mixed.

Table 2 shows the performance results of our experiments for
the different placement configurations. As can be seen, none of the
non-baseline configurations perform significantly better than the
baseline, as expected. Ideally, we would like the performance of an
application in the single configuration to perform no worse than in
the mixed configuration, which would indicate that our scheduling
scheme does not hurt performance. However, as shown, in the first
set, there is degradation in throughput for rabbitmq1 (degradation
between mixed and single for proftpd1 is not significant). Interest-
ingly, not all applications perform worst in the single configuration
as one may initially expect. Both mysql1 and nginx1 fare much bet-
ter in the single configuration compared to mixed. The main reason
for this is because in the mixed configuration they also share the
node with rabbitmq1, which is very CPU intensive and therefore
hurts the performance of the applications sharing the node with
it. proftpd1 bucks the trend in which both the mixed and single

configurations perform similarly. This is because proftpd1 does
not consume much CPU as the other applications, and is, therefore,
less impacted by the CPU-intensive rabbitmq1.

In the second set, influxdb is the CPU-intensive application that
consumes the most CPU (almost 700% of the 8 CPU cores). Unsur-
prisingly, when multiple instances are executed in the single config-
uration, it exhibits the worst performance reduction. All the other
applications are impacted when sharing the node with influxdb
as shown in the mixed column. As memcached and node.js do not
saturate their resources, the single configuration does not lead to
a reduction of performance compared with the baseline. mongodb,
on the other hand, has higher CPU utilization than memcahced and
node.js, hence, is negatively impacted compared to baseline.

These results confirm that placing applications that can exhaust
a common type of resource can result in negatively impacting
performance, which certainly can be a problem for our scheme. The
results also show that when resource saturation does not occur,
then placing instances from the same application together does not
necessarily result in degraded performance compared with a more
mixed configuration. As we have shown, in some cases, application
characteristics of neighboring containers can play a large role in
impacting performance.

One mitigating factor that can be used to reduce the chance of
our scheme over-saturating a node is to make use of resource re-
quirements and limitations specification in the pod’s configuration.
The scheduler will then be able to make use of this information to
prevent over-committing a node. Of course, such approaches will
trade off the resulting security benefits.

5 DISCUSSION

Limitation: ExS Granularity. In our work, we focused on mini-
mizing extraneous system calls. However, vulnerabilities can also
vary based on the arguments of the system calls. Hence, a similar
system call may in fact be used very differently. For instance, the
file descriptor argument to open can determine whether a write
call affects a file, network, or pipe. We leave the exploration of
extending ExS to incorporate other forms of extraneous system
properties for future research.

Limitation: Multi-container Pods. We assume single container
pods in this work but pods can have multiple containers which
can enlarge their system call profiles. Typically, containers that
share a pod are of the sidecar or proxy variety and have very spe-
cific functionalities. Multi-tier applications such as a database and
web-server often do not share a pod for scalability and flexibility
reasons [38]. Subsequently, we believe the increase in the system
call footprint of multi-container pods will likely be small. Still, this
can impact the efficacy of our approach. Fortunately, our results
with a much larger system call profile obtained through static anal-
ysis show promise for the effectiveness of our approach. We leave
the study of scheduling multi-container pods for future work.

Incentivizing tighter policies. Implementing a tight seccomp
policy is not trivial [8, 11, 19], and there has been little incentive for
developers to do so. In today’s systems, even the most conscientious
container using few system calls (e.g., with a tighter seccomp policy)
can be co-located on the same host with a malicious actor that does

821

Securing Container-based Clouds with Syscall-aware Scheduling ASIA CCS ’23, July 10–14, 2023, Melbourne, VIC, Australia

not restrict its attack surface to the host, thereby incurring risk.
On the other hand, we believe system call-aware scheduling can
introduce an incentive for users. If the user is willing to rework
their application to achieve a tighter seccomp policy, they will
be rewarded by being co-located with other conscientious users.
Malicious applications that do not restrict system calls would be
scheduled elsewhere due to high degrees of dissimilarity.

Addressing co-location attacks. One question is whether attack-
ers could leverage our scheduling policy to be easily co-located
with a specific target. SySched may indeed increase the probability
of co-location. However, the co-location attack is very probable in
the default scheme [15] too. One mitigation step is to add a non-
deterministic threshold that can help SySched to randomly choose
a node from candidate nodes where the candidate nodes have the
same or similar ExS score. The threshold helps to set the range of
ExS scores that should be considered similar. Furthermore, even
if such co-location attacks were to succeed and the intention is to
compromise the target container via known exploitable vulnerable
system calls, weights or anti-affinity mechanisms described earlier
in Section 4.4 can be used to isolate such malicious containers.

Obtaining system call profiles. Not all applications have readily
available workload generators which can hamper dynamic tech-
niques. Dynamic approaches also suffers from coverage gaps when
dealing with unexpected inputs. Static analysis approaches are re-
stricted to certain programming languages and may overestimate
system call usage. To address this challenge, a practical approach
used in the industry [3, 49] can be deployed. This approach involves
a learning phase where workloads are run in sandboxed environ-
ments while system call usage are recorded for a specified duration.
This captures actual usage data, alleviating some concerns from
both dynamic and static approaches but at the cost of increasing
application deployment management complexity.

Determiningweights of risky system calls. There are two issues
to consider: 1) how to determine the risk of certain system calls
and 2) how to map those risks into weight values used by SySched
to perform placement. The former is an orthogonal problem to our
work and we rely on existing approaches used in the industry and
academia. For example, one simple method would be to classify all
system calls associated with known kernel CVEs as risky, or a more
refined approach would be to rank the "riskiness" of system calls
based not only on their CVE association but also on their usage
in known kernel exploits [26]. Regarding the second issue, sets of
policies can be defined to partially automate the mapping of the
system call risks into SySched weights. For example, one policy
could be to assign a large SySched weight value to each system call
determined to be in a risky set. Another policy could be to assign
weights based on the normalized values of the ranked risk scores.
In practice, administrators must customize these mapping policies
to fit their risk tolerance and operating priorities.

6 RELATEDWORK

Traditional schedulers. These schedulers [6, 10, 20, 53] focus on
increasing density and utilization to reduce cost. They do not focus
on securing the host system frommalicious workloads nor the issue
of bad neighbors.

Techniques for tighter syscall policy. To alleviate the container
escape problem (i.e., restricting a container with tight system call
profile), researchers have proposed a minimalistic profile of allowed
system calls. Many works such as sysfilter [11], Confine [18], tem-
poral specialization [19], Chestnut [8], and Prof-gen [30] utilize
static analysis to identify the necessary system calls for the lifecycle
of a container so that they can restrict the other system calls.

These works propose techniques to generate a tight syscall pol-
icy, but not how to control the placements of neighbors. Hence,
application owners enjoy little to no incentive for the non-trivial ef-
fort of implementing a tight syscall policy [8, 11, 18, 19, 30]. SySched,
on the other hand, provides the mechanisms for controlling the
placement of “safe” container with one or more safe neighbors, thus
offering a way to enable user incentives for tight syscall policies.

Security of virtual machine through scheduling. Research has
been conducted into using workload scheduling to improve security
focusing on virtual machines [9, 16, 22, 23, 29, 54, 55]. The com-
mon goal of these works is to improve security of the entire cloud
through VM placement to reduce the probability of risks across
several dimensions: co-location risks [4, 17, 22, 23, 55], risks in the
hypervisor [22], and network reachability risks [22, 54]. Fine et
al. [16] design a scheduling algorithm to make placements by mini-
mizing the co-location threats and virtual machine density. To quan-
tify software vulnerability risks in VMs and the hypervisor, many
of these works [22, 54] rely on the common vulnerability scoring
system (CVSS) score. Allowing users to specify security constraints
such as requiring the availability of anti-virus/AppArmor in hosts,
network encryption, and VM affinity/anti-affinity policies for use as
inputs to the scheduler has been considered [9]. Security-focused
scheduling for container-based cloud workloads is discussed by
Bahrami et al. [5] with a focus on compliance of the underlying
system. The scheduling metrics used in these related works do not
take into consideration the relationship between scheduling and
system call usage profile (i.e., the underlying system with respect
to the attack surface area of the host interface).

Host security.Commercial tools such as Twistlock [49] andAqua [3]
enhance container security by securing the CI/CD pipeline such as
blocking unsafe builds, scanning images against known CVEs, and
providing runtime security. Traditional host security mechanisms
such as SELinux, AppArmor, seccomp, and IPtables enforce access
control policies on hosts. The security of hosts can also be enhanced
by minimizing and specializing the operating environment to re-
duce the host’s attack surface areas [32–34, 41–43, 47]. All of these
mechanisms can be potentially leveraged by our scheduling ap-
proach to enhance the security of the underlying hosts in the cloud.
Performing enforcement such as removing unnecessary code [24]
or eliminating control flow (e.g., ROP [44] gadgets) at the kernel
level per container requires kernel switching, incurring overhead
and complexity [21] but are complementary to SySched.

7 CONCLUSION
We explored the interplay between container scheduling and system
call usage profiles to improve container security in the cloud. We
implemented a greedy syscall-aware scheduler, SySched, utilizing
a new ExS metric to make container placement decisions. Our
experimental evaluations of SySched in a Kubernetes cluster using

822

ASIA CCS ’23, July 10–14, 2023, Melbourne, VIC, Australia Le et al.

42 real-world containers show up to 2x reduction of extraneous
system calls compared to the default scheduler, effectively reducing
up to 46% more victim nodes and up to 48% more victim containers.

REFERENCES
[1] Alexandru Agache, Marc Brooker, Alexandra Iordache, Anthony Liguori, Rolf

Neugebauer, Phil Piwonka, and Diana-Maria Popa. 2020. Firecracker: Light-
weight Virtualization for Serverless Applications. In 17th USENIX Symposium on
Networked Systems Design and Implementation. Santa Clara, CA, 419–434.

[2] Alexey Kopytov. 2022. sysbench - scriptable database and system performance
benchmark. https://github.com/akopytov/sysbench. Accessed 2022.

[3] Aqua. 2018. Aqua Introduces Runtime Protection Against "Zero Day"
Vulnerabilities for Containerized Applications. https://www.prnewswire.
com/news-releases/aqua-introduces-runtime-protection-against-zero-day-
vulnerabilities-for-containerized--applications-300682406.html. Accessed 2022.

[4] Yossi Azar, Seny Kamara, Ishai Menache, Mariana Raykova, and Bruce Shepard.
2014. Co-location-resistant clouds. In Proceedings of the 6th Edition of the ACM
Workshop on Cloud Computing Security. 9–20.

[5] M. Bahrami, A. Malvankar, K. K. Budhraja, C. Kundu, M. Singhal, and A. Kundu.
2017. Compliance-Aware Provisioning of Containers on Cloud. In 2017 IEEE 10th
International Conference on Cloud Computing (CLOUD). 696–700.

[6] Eric Boutin, Jaliya Ekanayake, Wei Lin, Bing Shi, Jingren Zhou, Zhengping Qian,
Ming Wu, and Lidong Zhou. 2014. Apollo: Scalable and coordinated scheduling
for cloud-scale computing. In 11th USENIX Symposium on OSDI. 285–300.

[7] Brian Cooper. 2022. YSCB - Yahoo! Cloud Serving Benchmark. https://github.
com/brianfrankcooper/YCSB. Accessed 2022.

[8] Claudio Canella, Mario Werner, Daniel Gruss, and Michael Schwarz.
2020. Automating Seccomp Filter Generation for Linux Applications.
arXiv:2012.02554 [cs.CR]

[9] E. Caron, A. D. Le, A. Lefray, and C. Toinard. 2013. Definition of Security
Metrics for the Cloud Computing and Security-Aware Virtual Machine Placement
Algorithms. In Int. Conf. on Cyber-Enabled Distributed Computing and Knowledge
Discovery. 125–131.

[10] Andrew Chung, Jun Woo Park, and Gregory R Ganger. 2018. Stratus: Cost-aware
container scheduling in the public cloud. In ACM Symp. on Cloud Computing.
121–134.

[11] Nicholas DeMarinis, KentWilliams-King, Di Jin, Rodrigo Fonseca, and Vasileios P.
Kemerlis. 2020. sysfilter: Automated System Call Filtering for Commodity Soft-
ware. In 23rd Int. Symp. on Research in Attacks, Intrusions and Defenses. 459–474.

[12] dirtycow. 2022. Dirty COW (CVE-2016-5195). https://dirtycow.ninja. Accessed
2022.

[13] Xuanyi Dong, Lu Liu, Katarzyna Musial, and Bogdan Gabrys. 2021. NATS-
Bench: Benchmarking NAS Algorithms for Architecture Topology and Size. IEEE
Transactions on Pattern Analysis and Machine Intelligence (TPAMI) (2021).

[14] Xuanyi Dong and Yi Yang. 2020. NAS-Bench-201: Extending the Scope of Repro-
ducible Neural Architecture Search. In Int. Conf. on Learning Representations.

[15] Chongzhou Fang, Han Wang, Najmeh Nazari, Behnam Omidi, Avesta Sasan,
Khaled N. Khasawneh, Setareh Rafatirad, and Houman Homayoun. 2022. REPT-
TACK: Exploiting Cloud Schedulers to Guide Co-Location Attacks. In Network
and Distributed Systems Security (NDSS) Symposium.

[16] Kevin Fine and Ezekiel Kruglick. 2018. Virtual machine placement. US Patent
9,965,309.

[17] Mauro Gaggero and Luca Caviglione. 2018. Model predictive control for energy-
efficient, quality-aware, and secure virtual machine placement. IEEE Transactions
on Automation Science and Engineering 16, 1 (2018), 420–432.

[18] Seyedhamed Ghavamnia, Tapti Palit, Azzedine Benameur, and Michalis Poly-
chronakis. 2020. Confine: Automated system call policy generation for container
attack surface reduction. In 23rd International Symposium on Research in Attacks,
Intrusions and Defenses ({RAID} 2020). 443–458.

[19] SeyedhamedGhavamnia, Tapti Palit, ShacheeMishra, andMichalis Polychronakis.
2020. Temporal System Call Specialization for Attack Surface Reduction. In 29th
USENIX Security Symposium. 1749–1766.

[20] Robert Grandl, Srikanth Kandula, Sriram Rao, Aditya Akella, and Janardhan
Kulkarni. 2016. GRAPHENE: Packing and dependency-aware scheduling for
data-parallel clusters. In 12th USENIX Symposium on OSDI. 81–97.

[21] Zhongshu Gu, Brendan Saltaformaggio, Xiangyu Zhang, and Dongyan Xu. 2014.
Face-change: Application-driven dynamic kernel view switching in a virtual
machine. In 44th IEEE Int. Conf. on Dependable Systems and Networks. 491–502.

[22] Jin Han, Wanyu Zang, Songqing Chen, and Meng Yu. 2017. Reducing security
risks of clouds through virtual machine placement. In IFIP Annual Conference on
Data and Applications Security and Privacy. Springer, 275–292.

[23] Yi Han, Jeffrey Chan, Tansu Alpcan, and Christopher Leckie. 2015. Using vir-
tual machine allocation policies to defend against co-resident attacks in cloud
computing. IEEE Trans. on Dependable and Secure Computing 14, 1 (2015), 95–108.

[24] Kihong Heo, Woosuk Lee, Pardis Pashakhaloo, and Mayur Naik. 2018. Effective
Program Debloating via Reinforcement Learning. In Proceedings of the ACM

Conference on Computer and Communications Security. 380–394.
[25] InfluxData. 2022. influxdb-comparisons. https://github.com/influxdata/influxdb-

comparisons. Accessed 2022.
[26] Sunwoo Jang, Somin Song, Byungchul Tak, Sahil Suneja, Michael V. Le, Chuan

Yue, and Dan Williams. 2022. SecQuant: Quantifying Container System Call
Exposure. In Computer Security – ESORICS 2022. 145–166.

[27] Kata Containers. 2022. Kata Containers. https://katacontainers.io/. Accessed
2022.

[28] Kelly Lucas. 2022. byte-unixbench. https://github.com/kdlucas/byte-unixbench.
Accessed 2022.

[29] Seontae Kim and Young-ri Choi. 2020. Constraint-aware VM placement in
heterogeneous computing clusters. Cluster Computing 23, 1 (2020), 71–85.

[30] Sungjin Kim, Byung Joon Kim, and Dong Hoon Lee. 2021. Prof-gen: Practical
Study on System Call Whitelist Generation for Container Attack Surface Reduc-
tion. In 2021 IEEE 14th International Conference on Cloud Computing. 278–287.

[31] Kubernetes SIGs. 2022. The Kubernetes Security Profiles Operator. https://github.
com/kubernetes-sigs/security-profiles-operator. Accessed 2022.

[32] Hsuan Chi Kuo, Dan Williams, Ricardo Koller, and Sibin Mohan. 2020. A Linux in
unikernel clothing. In Proc. of the 15th European Conference on Computer Systems.

[33] Hsuan-Chi Kuo, Jianyan Chen, Sibin Mohan, and Tianyin Xu. 2020. Set the
Configuration for the Heart of the OS: On the Practicality of Operating System
Kernel Debloating. Proceedings of the ACM on Measurement and Analysis of
Computing Systems 4, 1 (2020), 1–27.

[34] Anil Kurmus, Sergej Dechand, and R. Kapitza. 2014. Quantifiable Run-Time
Kernel Attack Surface Reduction. In Detection of Intrusions and Malware, and
Vulnerability Assessment. 212–234.

[35] Min Li, Yulong Zhang, Kun Bai, Wanyu Zang, Meng Yu, and Xubin He. 2012.
Improving cloud survivability through dependency based virtual machine place-
ment. In International Conference on Security and Cryptography. 321–326.

[36] Lightstreamer. 2022. Lightstreamer Doc. https://github.com/docker-library/docs/
tree/master/lightstreamer. Accessed 2022.

[37] Max Kellermann. 2022. The Dirty Pipe Vulnerability. https://dirtypipe.cm4all.com.
Accessed 2022.

[38] Nick Chase. 2022. Kubernetes multi-container pods and container communi-
cation. https://www.mirantis.com/blog/multi-container-pods-and-container-
communication-in-kubernetes/. Accessed 2022.

[39] Patrick Hunt. 2022. ZooKeeper Smoketest. https://github.com/phunt/zk-
smoketest. Accessed 2022.

[40] RabbitMQ. 2022. RabbitMQ PerfTest. https://rabbitmq.github.io/rabbitmq-perf-
test/stable/htmlsingle/. Accessed 2022.

[41] Rancher. 2021. Overview of RancherOS. https://rancher.com/docs/os/v1.x/en/.
Accessed 2021.

[42] Red Hat, Inc. 2021. Chapter 5. Red Hat Enterprise Linux CoreOS
(RHCOS). https://access.redhat.com/documentation/en-us/openshift_container_
platform/4.1/html/architecture/architecture-rhcos. Accessed 2021.

[43] Red Hat, Inc. 2021. kpatch - live kernel patching. https://www.aquasec.com/.
Accessed 2021.

[44] Ryan Roemer, Erik Buchanan, Hovav Shacham, and Stefan Savage. 2012. Return-
oriented programming: Systems, languages, and applications. ACM Transactions
on Information and System Security (TISSEC) 15, 1 (2012), 1–34.

[45] Selectel. 2022. Benchmark for load testing FTP servers. https://github.com/
selectel/ftpbench. Accessed 2022.

[46] Sysdig, Inc. 2022. Security Tools for Containers, Kubernetes, and Cloud - Sysdig.
https://sysdig.com/. Accessed 2022.

[47] Reinhard Tartler, Anil Kurmus, Bernhard Heinloth, Valentin Rothberg, Andreas
Ruprecht, Daniela Dorneanu, Rüdiger Kapitza, Wolfgang Schröder-Preikschat,
and Daniel Lohmann. 2012. Automatic OS Kernel TCB Reduction by Leveraging
Compile-Time Configurability. In 8th Workshop on Hot Topics in System Depend.

[48] The Authors of gVisor. 2022. gVisor. https://gvisor.dev/. Accessed 2022.
[49] Twistlock. 2017. Twistlock 1.7 With New Runtime Defense Archi-

tecture. https://www.prnewswire.com/news-releases/twistlock-announces-
twistlock-17-with-new-runtime-defense-architecture-300393120.html. Ac-
cessed 2022.

[50] Will Glozer. 2022. wrk - a HTTP benchmarking tool. https://github.com/wg/wrk.
Accessed 2022.

[51] Dan Williams, Ricardo Koller, Martin Lucina, and Nikhil Prakash. 2018. Uniker-
nels as processes. In Proc. ACM Symposium on Cloud Computing. 199–211.

[52] Dan Williams, Ricardo Koller, and Brandon Lum. 2018. Say goodbye to virtual-
ization for a safer cloud. In 10th Workshop on Hot Topics in Cloud Computing.

[53] Timothy Wood, Gabriel Tarasuk-Levin, Prashant Shenoy, Peter Desnoyers, Em-
manuel Cecchet, and Mark D Corner. 2009. Memory buddies: exploiting page
sharing for smart colocation in virtualized data centers. ACM SIGOPS Operating
Systems Review 43, 3 (2009), 27–36.

[54] Xuebiao Yuchi and S. Shetty. 2015. Enabling security-aware virtual machine
placement in IaaS clouds. In IEEE Military Communications Conf. 1554–1559.

[55] S. Yu, X. Gui, F. Tian, P. Yang, and J. Zhao. 2013. A Security-Awareness Virtual
Machine Placement Scheme in the Cloud. In IEEE 15th International Conference
on High Performance Computing and Communications. 1078–1083.

823

https://github.com/akopytov/sysbench
https://www.prnewswire.com/news-releases/aqua-introduces-runtime-protection-against-zero-day-vulnerabilities-for-containerized--applications-300682406.html
https://www.prnewswire.com/news-releases/aqua-introduces-runtime-protection-against-zero-day-vulnerabilities-for-containerized--applications-300682406.html
https://www.prnewswire.com/news-releases/aqua-introduces-runtime-protection-against-zero-day-vulnerabilities-for-containerized--applications-300682406.html
https://github.com/brianfrankcooper/YCSB
https://github.com/brianfrankcooper/YCSB
https://arxiv.org/abs/2012.02554
https://dirtycow.ninja
https://github.com/influxdata/influxdb-comparisons
https://github.com/influxdata/influxdb-comparisons
https://katacontainers.io/
https://github.com/kdlucas/byte-unixbench
https://github.com/kubernetes-sigs/security-profiles-operator
https://github.com/kubernetes-sigs/security-profiles-operator
https://github.com/docker-library/docs/tree/master/lightstreamer
https://github.com/docker-library/docs/tree/master/lightstreamer
https://dirtypipe.cm4all.com
https://www.mirantis.com/blog/multi-container-pods-and-container-communication-in-kubernetes/
https://www.mirantis.com/blog/multi-container-pods-and-container-communication-in-kubernetes/
https://github.com/phunt/zk-smoketest
https://github.com/phunt/zk-smoketest
https://rabbitmq.github.io/rabbitmq-perf-test/stable/htmlsingle/
https://rabbitmq.github.io/rabbitmq-perf-test/stable/htmlsingle/
https://rancher.com/docs/os/v1.x/en/
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.1/html/architecture/architecture-rhcos
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.1/html/architecture/architecture-rhcos
https://www.aquasec.com/
https://github.com/selectel/ftpbench
https://github.com/selectel/ftpbench
https://sysdig.com/
https://gvisor.dev/
https://www.prnewswire.com/news-releases/twistlock-announces-twistlock-17-with-new-runtime-defense-architecture-300393120.html
https://www.prnewswire.com/news-releases/twistlock-announces-twistlock-17-with-new-runtime-defense-architecture-300393120.html
https://github.com/wg/wrk

Securing Container-based Clouds with Syscall-aware Scheduling ASIA CCS ’23, July 10–14, 2023, Melbourne, VIC, Australia

(a) Reduction of victim nodes

(b) Reduction of victim containers

Figure 8: Kubernetes default scheduler vs. SySched (using
statically generated system call profiles) in terms of reducing
the number of (a) victim nodes and (b) victim containers for
a particular CVE. Each cell represents how many additional
victim nodes or containers SySched can reduce compared to
the default. Positive cell values (gray to black colors) indicate
improvement. The white color indicates no improvement.

A APPENDIX
A.1 Workload Generators
All the workload generators are configured to run for about 60
seconds. The ftpbench [45] uploads a 1MB repeatedly and wrk [50]
tool continuously send HTTP requests to servers using 100 con-
nections. Sysbench performs thousands of OLTP type read, write,
and update operations. We use a predefined load from YCSB [7]
for stressing non-relational databases. perf-test [40] publishes
messages as quickly as possible. We generate and simulate the
time series databases using the influxdb-comparison tool [25]. For
UnixBench [28] we run the systems test (e.g., file copy, context
switching, process creation, etc.). The zk-smoketest [39] creates
zookeeper nodes, attaches and listens to watches on the zookeeper
nodes, and delete zookeeper nodes.

Table 3: System calls generated using static analysis and dy-
namic analysis.

Name
System calls

(static)
System calls
(dynamic) dynamic / static

python.json 188 46 0.24
nats.json 116 30 0.26
ruby.json 172 48 0.28
hiawatha.json 193 56 0.29
nodejs.json 171 50 0.29
memcached.json 158 53 0.34
cherokee.json 197 71 0.36
alpine.json 180 71 0.39
busybox.json 194 75 0.39
wordpress.json 201 82 0.41
vsftpd.json 201 87 0.43
drupal.json 190 83 0.44
elasticsearch.json 183 80 0.44
golang.json 145 67 0.46
httpd.json 167 76 0.46
gcc.json 145 70 0.48
openjdk.json 184 89 0.48
percona.json 186 90 0.48
proftpd.json 190 91 0.48
dockerreg.json 180 88 0.49
influxdb.json 146 72 0.49
vault.json 204 100 0.49
lightstreamer.json 183 73 0.4
lighttpd.json 204 81 0.4
jenkins.json 191 97 0.51
ubuntu.json 144 74 0.51
centos.json 143 75 0.52
mongodb.json 188 100 0.53
postgres.json 199 105 0.53
redis.json 163 86 0.53
mysql.json 192 105 0.55
rabbitmq.json 186 102 0.55
zookeeper.json 186 107 0.58
ghost.json 186 110 0.59
nginx.json 165 98 0.59
mariadb.json 199 99 0.5
nextcloud.json 198 120 0.61
thttpd.json 116 71 0.61
maven.json 119 79 0.66
docker.json 180 125 0.69
traefik.json 131 90 0.69
gradle.json 119 87 0.73

824

ASIA CCS ’23, July 10–14, 2023, Melbourne, VIC, Australia Le et al.

Table 4: CVE number, the CVE associated system calls, and the number of applications that make use of the associated system
calls.

CVE System calls # of
apps

Applications

CVE-2010-4243 uselib, execve, execveat 41 openjdk, vsftpd, ruby, traefik, mongodb, nextcloud, docker, elasticsearch, golang, maven, percona, influxdb, hiawatha, gradle, jenkins, gcc, light-
streamer, memcached, mysql, httpd, python, drupal, nodejs, ubuntu, cherokee, wordpress, alpine, centos, vault, postgres, thttpd, nginx, ghost,
lighttpd, mariadb, proftpd, dockerreg, zookeeper, busybox, redis, rabbitmq

CVE-2018-18281 execve, execveat 41 openjdk, vsftpd, ruby, traefik, mongodb, nextcloud, docker, elasticsearch, golang, maven, percona, influxdb, hiawatha, gradle, jenkins, gcc, light-
streamer, memcached, mysql, httpd, python, drupal, nodejs, ubuntu, cherokee, wordpress, alpine, centos, vault, postgres, thttpd, nginx, ghost,
lighttpd, mariadb, proftpd, dockerreg, zookeeper, busybox, redis, rabbitmq

CVE-2010-3066 io_submit 3 percona, mysql, mariadb
CVE-2011-1082 epoll_ctl, epoll_pwait,

epoll_wait
39 openjdk, ruby, traefik, mongodb, nextcloud, docker, elasticsearch, golang, percona, influxdb, hiawatha, gradle, jenkins, lightstreamer, memcached,

mysql, httpd, python, drupal, nodejs, ubuntu, nats, cherokee, wordpress, alpine, centos, vault, postgres, thttpd, nginx, ghost, lighttpd, mariadb,
dockerreg, proftpd, zookeeper, busybox, redis, rabbitmq

CVE-2014-7970 pivot_root 14 alpine, centos, vault, thttpd, nginx, ghost, lighttpd, traefik, docker, nextcloud, ubuntu, dockerreg, zookeeper, redis
CVE-2010-3858 execve, execveat 41 openjdk, vsftpd, ruby, traefik, mongodb, nextcloud, docker, elasticsearch, golang, maven, percona, influxdb, hiawatha, gradle, jenkins, gcc, light-

streamer, memcached, mysql, httpd, python, drupal, nodejs, ubuntu, cherokee, wordpress, alpine, centos, vault, postgres, thttpd, nginx, ghost,
lighttpd, mariadb, proftpd, dockerreg, zookeeper, busybox, redis, rabbitmq

CVE-2013-1858 unshare 7 vault, ghost, traefik, docker, nextcloud, dockerreg, zookeeper
CVE-2016-3672 execve, execveat 41 openjdk, vsftpd, ruby, traefik, mongodb, nextcloud, docker, elasticsearch, golang, maven, percona, influxdb, hiawatha, gradle, jenkins, gcc, light-

streamer, memcached, mysql, httpd, python, drupal, nodejs, ubuntu, cherokee, wordpress, alpine, centos, vault, postgres, thttpd, nginx, ghost,
lighttpd, mariadb, proftpd, dockerreg, zookeeper, busybox, redis, rabbitmq

CVE-2015-7550 keyctl 7 vault, ghost, traefik, docker, nextcloud, dockerreg, zookeeper
CVE-2012-4530 execve, execveat 41 openjdk, vsftpd, ruby, traefik, mongodb, nextcloud, docker, elasticsearch, golang, maven, percona, influxdb, hiawatha, gradle, jenkins, gcc, light-

streamer, memcached, mysql, httpd, python, drupal, nodejs, ubuntu, cherokee, wordpress, alpine, centos, vault, postgres, thttpd, nginx, ghost,
lighttpd, mariadb, proftpd, dockerreg, zookeeper, busybox, redis, rabbitmq

CVE-2014-9585 execve, execveat 41 openjdk, vsftpd, ruby, traefik, mongodb, nextcloud, docker, elasticsearch, golang, maven, percona, influxdb, hiawatha, gradle, jenkins, gcc, light-
streamer, memcached, mysql, httpd, python, drupal, nodejs, ubuntu, cherokee, wordpress, alpine, centos, vault, postgres, thttpd, nginx, ghost,
lighttpd, mariadb, proftpd, dockerreg, zookeeper, busybox, redis, rabbitmq

CVE-2015-7613 semget, msgget, shmget 1 postgres
CVE-2015-1593 execve, execveat 41 openjdk, vsftpd, ruby, traefik, mongodb, nextcloud, docker, elasticsearch, golang, maven, percona, influxdb, hiawatha, gradle, jenkins, gcc, light-

streamer, memcached, mysql, httpd, python, drupal, nodejs, ubuntu, cherokee, wordpress, alpine, centos, vault, postgres, thttpd, nginx, ghost,
lighttpd, mariadb, proftpd, dockerreg, zookeeper, busybox, redis, rabbitmq

CVE-2010-2478 ioctl 40 openjdk, vsftpd, ruby, traefik, mongodb, nextcloud, docker, elasticsearch, golang, maven, percona, influxdb, hiawatha, gradle, jenkins, gcc, light-
streamer, mysql, httpd, python, drupal, nodejs, ubuntu, cherokee, wordpress, alpine, centos, vault, postgres, thttpd, nginx, ghost, lighttpd, mariadb,
proftpd, dockerreg, zookeeper, busybox, redis, rabbitmq

CVE-2019-9857 inotify_add_watch 1 gradle
CVE-2017-15274 add_key, keyctl 7 vault, ghost, traefik, docker, nextcloud, dockerreg, zookeeper
CVE-2016-8655 setsockopt 34 openjdk, vsftpd, traefik, mongodb, nextcloud, docker, elasticsearch, maven, percona, influxdb, hiawatha, gradle, jenkins, lightstreamer, memcached,

mysql, httpd, drupal, nodejs, nats, cherokee, wordpress, vault, thttpd, nginx, postgres, ghost, lighttpd, mariadb, proftpd, dockerreg, zookeeper, redis,
rabbitmq

CVE-2009-0745 ioctl 40 openjdk, vsftpd, ruby, traefik, mongodb, nextcloud, docker, elasticsearch, golang, maven, percona, influxdb, hiawatha, gradle, jenkins, gcc, light-
streamer, mysql, httpd, python, drupal, nodejs, ubuntu, cherokee, wordpress, alpine, centos, vault, postgres, thttpd, nginx, ghost, lighttpd, mariadb,
proftpd, dockerreg, zookeeper, busybox, redis, rabbitmq

CVE-2010-4346 execve, execveat 41 openjdk, vsftpd, ruby, traefik, mongodb, nextcloud, docker, elasticsearch, golang, maven, percona, influxdb, hiawatha, gradle, jenkins, gcc, light-
streamer, memcached, mysql, httpd, python, drupal, nodejs, ubuntu, cherokee, wordpress, alpine, centos, vault, postgres, thttpd, nginx, ghost,
lighttpd, mariadb, proftpd, dockerreg, zookeeper, busybox, redis, rabbitmq

CVE-2009-3624 keyctl 7 vault, ghost, traefik, docker, nextcloud, dockerreg, zookeeper
CVE-2017-5123 waitid 2 docker, golang
CVE-2015-2686 sendto, recvfrom 30 openjdk, vsftpd, traefik, docker, nextcloud, maven, percona, influxdb, hiawatha, gradle, jenkins, lightstreamer, memcached, mysql, httpd, drupal,

nats, cherokee, wordpress, vault, thttpd, nginx, postgres, ghost, lighttpd, mariadb, proftpd, dockerreg, zookeeper, rabbitmq
...
CVE-2017-18208 madvise 30 openjdk, traefik, mongodb, nextcloud, docker, elasticsearch, golang, maven, percona, influxdb, gradle, jenkins, lightstreamer, memcached, mysql,

httpd, drupal, nats, cherokee, wordpress, alpine, vault, ghost, lighttpd, mariadb, dockerreg, zookeeper, busybox, redis, rabbitmq
CVE-2016-9604 keyctl 7 vault, ghost, traefik, docker, nextcloud, dockerreg, zookeeper
CVE-2008-3527 execve, execveat 41 openjdk, vsftpd, ruby, traefik, mongodb, nextcloud, docker, elasticsearch, golang, maven, percona, influxdb, hiawatha, gradle, jenkins, gcc, light-

streamer, memcached, mysql, httpd, python, drupal, nodejs, ubuntu, cherokee, wordpress, alpine, centos, vault, postgres, thttpd, nginx, ghost,
lighttpd, mariadb, proftpd, dockerreg, zookeeper, busybox, redis, rabbitmq

CVE-2018-13053 clock_nanosleep 5 openjdk, mariadb, nextcloud, ubuntu, elasticsearch
CVE-2017-7308 setsockopt 34 openjdk, vsftpd, traefik, mongodb, nextcloud, docker, elasticsearch, maven, percona, influxdb, hiawatha, gradle, jenkins, lightstreamer, memcached,

mysql, httpd, drupal, nodejs, nats, cherokee, wordpress, vault, thttpd, nginx, postgres, ghost, lighttpd, mariadb, proftpd, dockerreg, zookeeper, redis,
rabbitmq

CVE-2012-3511 madvise 30 openjdk, traefik, mongodb, nextcloud, docker, elasticsearch, golang, maven, percona, influxdb, gradle, jenkins, lightstreamer, memcached, mysql,
httpd, drupal, nats, cherokee, wordpress, alpine, vault, ghost, lighttpd, mariadb, dockerreg, zookeeper, busybox, redis, rabbitmq

CVE-2010-4072 shmctl 1 postgres
CVE-2016-0728 add_key, request_key,

keyctl
7 vault, ghost, traefik, docker, nextcloud, dockerreg, zookeeper

CVE-2011-1090 removexattr, lremovex-
attr, fremovexattr, setx-
attr, lsetxattr, fsetxattr

3 vault, docker, nginx

CVE-2012-3375 epoll_ctl 33 openjdk, traefik, mongodb, nextcloud, docker, golang, influxdb, gradle, jenkins, lightstreamer, memcached, mysql, httpd, drupal, nodejs, ubuntu,
nats, cherokee, wordpress, alpine, centos, vault, postgres, thttpd, nginx, ghost, lighttpd, mariadb, dockerreg, zookeeper, busybox, redis, rabbitmq

CVE-2017-12192 keyctl 7 vault, ghost, traefik, docker, nextcloud, dockerreg, zookeeper
CVE-2017-14954 waitid 2 docker, golang
CVE-2013-0914 execve, execveat 41 openjdk, vsftpd, ruby, traefik, mongodb, nextcloud, docker, elasticsearch, golang, maven, percona, influxdb, hiawatha, gradle, jenkins, gcc, light-

streamer, memcached, mysql, httpd, python, drupal, nodejs, ubuntu, cherokee, wordpress, alpine, centos, vault, postgres, thttpd, nginx, ghost,
lighttpd, mariadb, proftpd, dockerreg, zookeeper, busybox, redis, rabbitmq

CVE-2017-6074 setsockopt 34 openjdk, vsftpd, traefik, mongodb, nextcloud, docker, elasticsearch, maven, percona, influxdb, hiawatha, gradle, jenkins, lightstreamer, memcached,
mysql, httpd, drupal, nodejs, nats, cherokee, wordpress, vault, thttpd, nginx, postgres, ghost, lighttpd, mariadb, proftpd, dockerreg, zookeeper, redis,
rabbitmq

CVE-2009-0859 shmctl 1 postgres
CVE-2016-9793 setsockopt 34 openjdk, vsftpd, traefik, mongodb, nextcloud, docker, elasticsearch, maven, percona, influxdb, hiawatha, gradle, jenkins, lightstreamer, memcached,

mysql, httpd, drupal, nodejs, nats, cherokee, wordpress, vault, thttpd, nginx, postgres, ghost, lighttpd, mariadb, proftpd, dockerreg, zookeeper, redis,
rabbitmq

825

Securing Container-based Clouds with Syscall-aware Scheduling ASIA CCS ’23, July 10–14, 2023, Melbourne, VIC, Australia

(a) With system call profiles dynamic profiling (b) With system call profiles static profiling

Figure 9: Average total system calls used by all containers across all nodes for a particular cluster size

826

	Abstract
	1 Introduction
	2 The Effect of System Calls on Security of Container-based Clouds
	2.1 Sandboxing Containers
	2.2 Threat Model and Goals
	2.3 Better Security through Scheduling

	3 Syscall-Aware Scheduler Design
	3.1 Scheduling Metrics
	3.2 Scheduling Scheme
	3.3 Implementation

	4 Evaluation
	4.1 Experimental setup
	4.2 Estimating Optimal ExS Reduction
	4.3 Reducing ExS
	4.4 Security Benefits
	4.5 Performance Impact

	5 Discussion
	6 Related Work
	7 Conclusion
	References
	A Appendix
	A.1 Workload Generators

