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ABSTRACT

System calls are a critical building block in many serious security
attacks, such as control-flow hijacking and privilege escalation
attacks. Security-sensitive system calls (e.g., execve, mprotect), es-
pecially play a major role in completing attacks. Yet, few defense
efforts focus to ensure their legitimate usage, allowing attackers to
maliciously leverage system calls in attacks.

In this paper, we propose a novel System Call Integrity, which
enforces the correct use of system calls throughout runtime. We
propose three new contexts enforcing (1) which system call is called
and how it is invoked (Call Type), (2) how a system call is reached
(Control Flow), and (3) that arguments are not corrupted (Argument
Integrity). Our defense mechanism thwarts attacks by breaking the
critical building block in their attack chains.

We implement Bastion, as a compiler and runtime monitor
system, to demonstrate the efficacy of the three system call contexts.
Our security case study shows that Bastion can effectively stop
all the attacks including real-world exploits and recent advanced
attack strategies. Deploying Bastion on three popular system call-
intensive programs, NGINX, SQLite, and vsFTPd, we show Bastion
is secure and practical, demonstrating overhead of 0.60%, 2.01%,
and 1.65%, respectively.
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1 INTRODUCTION

System calls are a vital part in any program, providing an interface
to interact with the operating system (OS). At the same time, they
are a core component of various attacks (e.g., arbitrary code exe-
cution, privilege escalation) enabling attackers to complete their
attack.

Many defense techniques, such as debloating [24, 79, 80], system
call filtering [36, 41, 42], and system call sandboxing [63, 94] aim to
minimize the available attack surface by disabling unused system
calls (i.e., denylist). However, these defenses still allow system calls
to be invoked, even if they are used illegitimately, as they remain
needed for legitimate use as well.

In this paper, we propose System Call Integrity, a novel security
policy that enforces the correct use of system calls in a program.
The key idea is that a correct use of system calls should follow two
properties: (1) the control flow to the system call when invoked should
be legitimate and (2) the arguments of the system call should not be
compromised. In order to capture these two properties effectively, we
propose three system call contexts, namely Call Type, Control Flow,
and Argument Integrity Contexts, which collectively represent how
system calls are used in a given program. We enforce the correct
use of system calls in a program throughout its runtime in order
to break a critical part in attack chains – i.e., illegitimate use of a
system call – and negate attacks leveraging system calls. Call Type
Context allows system calls to be invoked with only the calling
convention (i.e., direct call vs. indirect call) they are used within the
application. It provides finer-grained system call filtering. Control
Flow Context only allows system calls to be invoked through a
legitimate runtime control-flow path. It can be considered as a
scope-reduced CFI, purposely narrow and concentrated to focus on
system call related control-flow paths. Argument Integrity Context
ensures that the arguments of a system call are not compromised.
It is data integrity, but only for system call arguments.

In order to enforce our three system call contexts, we propose
Bastion, a prototype defense system for system call integrity. To
enforce the contexts with minimal runtime overhead, we designed
Bastion as a two part system, consisting of a custom compiler
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pass and a runtime enforcement monitor. Our Bastion compiler
pass performs static analysis of system call usages within a pro-
gram and extracts context information – such as function call types,
control-flow paths, and argument tracing – for each system call.
Our Bastion runtime monitor uses the compiler-generated meta-
data and minimal instrumentation to enforce all three system call
contexts. Since system calls are often the most critical point in
completing an attack, Bastion intervenes only when a system call
is being attempted to be invoked where Bastion confirms if any
of the three contexts have been violated.

We evaluate the strength of Bastion’s security against both
real-world exploits and synthesized attacks of advanced attack
strategies [34, 47, 81, 82, 93]. Also, we evaluate our Bastion proto-
type using varied real-world applications to evaluate its efficiency.
Our evaluation confirms that using all three contexts effectively
protects sensitive system calls from illegitimate use. Bastion re-
quires minimal instrumentation and narrow runtime interference
for their protection, so Bastion imposes negligible performance
overhead (0.60%-2.01%) even for system call-intensive applications:
NGINX web server, SQLite database engine, and vsFTPd FTP server.
Therefore, our Bastion design is lightweight and it is a practical
solution to provide comprehensive hardening of system calls.

We make the following contributions in this paper:
• Novel system call contexts for system call integrity. We
propose three system call contexts, namely Call Type, Control
Flow, and Argument Integrity contexts. They collectively repre-
sent the legitimate use of a system call in a specific program for
system call integrity.
• Bastion defense enforcing system call integrity. We de-
sign and implement Bastion, which enforces our proposed con-
texts. The Bastion compiler pass analyzes all system call usage
in a program, performs necessary instrumentation, and generates
accompanying metadata. Bastion’s runtime monitor enforces
all static and dynamic aspects of each system call context.
• Security & performance evaluation. We conducted security
case studies of how Bastion defends against real-world exploits
and synthesized attacks with advanced attack strategies. We also
performed a performance evaluation with system call intensive
real-world applications. Our evaluation shows our contexts can
block advanced attacks effectively from illegitimate use of system
calls with minimal performance overhead.

2 BACKGROUND

In this section, we first discuss how attackers can weaponize system
calls (§2.1). Then we introduce the current defense techniques and
discuss their limitations in securing system call usage in applica-
tions (§2.2).

2.1 System Call Usage in Attacks

While an attacker may utilize gadgets or ROP chains within a
vulnerable program, their real objective is almost always to reach
and abuse critical system calls to achieve arbitrary execution [25, 81,
93]. While there exist over 400+ system calls in recent Linux kernel
versions [90], only a certain subset of system calls are actually
desired by attackers. These sensitive system calls are responsible
for critical OS operations, including process control and memory

management. Thus, sensitive system calls particularly play a key
role in attack completion. While recent works [33, 37, 48, 78, 91]
have some overlap in sensitive system calls selected, their exact
coverage varies.

With insight that a majority of critical attacks need some form
of sensitive system call invocation, it raises the question as to why
more care has not been taken by recent defense techniques to
strengthen defenses around system calls. Current known and future
unknown attacks may have different levels of complexity, different
approaches, and different goals. However note that almost all must
use sensitive system calls to complete their attack. Therefore, it is
worthwhile to explore whether strong constraint policies can be
created around system calls.

2.2 Current System Call Protection

Mechanisms

Attack surface reduction. Debloating techniques [24, 79, 80]
reduce the attack surface by carving out unused code in a program
binary. They leverage static program analysis or dynamic coverage
analysis using test cases to discoverwhat code is indeed used. Hence,
they can eliminate unnecessary system calls not used in a program.
However, many sensitive system calls (e.g., mmap, mprotect) are
used for program and library loading so such sensitive system calls
remain even after debloating.
System call filtering. Seccomp [54] is a system call filtering frame-
work. A system administrator can define an allowlist/denylist of sys-
tem calls for an application (i.e., process) and, if necessary, restrict
a system call argument to a constant value. However, seccomp’s al-
lowlist/denylist approach cannot eliminate sensitive-but-necessary
system calls (e.g., mmap, mprotect). Moreover, constraining a sys-
tem call argument to a constant value is applied across the entire
application scope so this argument constraining policy could be
more permissive than necessary (e.g., an application uses a system
call with two very different permissions flags like read-only vs.
read-executable).
Control-flow integrity (CFI). Enforcing integrity of control flow
can be one way to enforce legitimate use of system calls in a pro-
gram. CFI defenses [22, 27, 40, 45, 46, 48, 57, 58, 66, 69, 89, 92, 95]
aim to enforce the integrity of all forward and backward control
flow transfers in a program. CFI-style defenses perform analysis to
generate and define an allowed set of targets per-callsite, called an
equivalence class (EC). The size and accuracy of ECs are dependent
on the analysis technique used to derive legal targets for a given call-
site. Imprecise (static) analysis lead to large ECs, allowing attackers
to bypass CFI defenses [81, 93]. Enforcing an EC equal to one is ideal
– i.e., there is only one legitimate control transfer at a given moment
in program execution. However, CFI techniques maintaining an
EC equal to one [48, 58] incur high runtime overhead or consume
a lot of system resources due to heavy program instrumentation
and runtime monitoring (e.g., Intel PT). Even with a perfect CFI
technique (i.e., EC=1, low overhead), an attacker can still divert
the intended use of a system call by corrupting its arguments (e.g.,
pathname in execve, prot flag in mmap).
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Data-flow integrity (DFI). To enforce the integrity of data (e.g.,
function pointers, system call arguments), DFI [31] tracks data-
flow of each and every memory access, instrumenting every load
and store instruction, thus incuring significant performance over-
head [39]. Also, the effectiveness of DFI depends on the accuracy
of the points-to analysis used to generate the data-flow graph.

3 CONTEXTS FOR SYSTEM CALL INTEGRITY

As discussed previously, debloating and system call filtering make a
binary decisionwhether a system call is allowed to be used. Defining
an allowlist or argument values for a program is too coarse-grained
and ineffective to protect commonly used sensitive system calls
because the context of system call usage is not considered at all.
Meanwhile, CFI and DFI are application-wide defense mechanisms,
but impose high runtime overhead and require significant system
resources. Instead of carrying out fine-grained integrity enforce-
ment, Bastion focuses on protecting an essential component –
system call usage – in an attack chain, to thwart attacks.

A legitimate use of a system call should follow two invariants: (1)
the control-flow integrity to a system call and (2) the data integrity
of system call arguments. In order to enforce these two invariants
effectively, we propose three contexts that are established from
the system calls themselves. These contexts encompass system
calls by incorporating (1) which system call is called and how it is
invoked (§3.1), (2) how a system call is reached within a program
(§3.2), and (3) if its arguments are sound (§3.3). Collectively, these
system call contexts prevent system calls from being weaponized.
In stark contrast to prior defense techniques, such as control-flow
and data integrity, we selectively protect only program elements
relevant to system calls, greatly minimizing invasive flow tracking
and runtime overhead. We now describe each context in detail with
two real-world code examples (§3.4).

3.1 Call-Type Context

We first propose call-type context, which is a per-system call context
in a program.With this context, only permitted system calls are able
to be called in their allowed manner, either through a direct or indi-
rect call. By applying the call-type context, we are able to provide
more fine-grained system call constraints by separating system calls
into several sub-categories – (1) not-callable, (2) directly-callable,
and (3) indirectly-callable – compared to the binary-decision de-
bloating and system call filtering approaches. The call-type context
blocks all unused system calls (i.e., not-callable type). Note, the not-
callable type is applied to all system calls, security-critical or not,
thus protecting all system calls in a coarse-grained capacity. For al-
lowed system calls, it divides them into ones that can be called from
a direct call site (i.e., directly-callable type) and ones that can be
called from an indirect call site via a pointer (i.e., indirectly-callable
type). In our observation, it is rare for (especially sensitive) system
calls to be called from an indirect call site so we can constrain
accessibility of indirectly-callable system calls.

3.2 Control-Flow Context

Our control-flow context enforces that a (sensitive) system call is
reached and called only through legitimate control-flow paths dur-
ing runtime. Hence, it ensures that a control-flow path to a system

call cannot be hijacked. All sensitive system calls in a program
have their respective valid control-flow paths associated with one
another to enforce this context at runtime. This context is specif-
ically narrow to only cover those portions of code that actually
reach a sensitive system call; the remaining unrelated control-flow
paths are not considered or covered by this context. Note that our
call-type context compliments this context by verifying whether
a specific sensitive system call is permitted to be the target of an
indirect callsite.

3.3 Argument Integrity Context

Our argument integrity context provides data integrity for all vari-
ables passed as arguments to (sensitive) system call callsites. By
leveraging this context, a system call can only use valid arguments
when being invoked even if attackers have access to memory cor-
ruption vulnerabilities. For this context to be complete, we classify
a system call argument type as either (1) a direct argument or (2)
an extended argument. In the direct argument type, the passed ar-
gument value itself is the argument (e.g., prot flag in mmap) so we
check the passed argument value for argument integrity. Alter-
natively, an extended argument type uses one or more levels of
indirection of the passed argument for argument integrity check-
ing. For example, in the case of pathname in execve, we need to
check not only the pathname pointer but also whether the memory
pointed to by pathname is corrupted or not, while taking care to
avoid time-of-check to time-of-use issues (§6.3.2).

This context takes the expected argument type and its field into
consideration for each individual argument for a given system
call. For example, in Listing 1, the path field of a ngx_exec_ctx_t
structure (i.e., ctx->path) is the one that is verified. In this way, our
argument integrity context is both a type-sensitive and field-sensitive
integrity mechanism. Moreover, this context includes coverage of
all non-argument variables associated with each argument’s use-def
chain. Thereby, attacks which try to corrupt an argument indirectly
are still detected.

Compared to traditional data integrity defenses like DFI [31], we
limit the scope to system call arguments (and their data-dependent
variables). Further, the argument integrity context checks the in-
tegrity of argument values [49] rather than enforcing the integrity
of data-flow, thus reducing the runtime overhead.

3.4 Real-World Code Examples

We use two code snippets from the NGINX web server [14] as run-
ning examples to demonstrate diversity in possible attacks and how
all three proposed contexts can negate these attacks collectively.
Note that use of execve and mprotect in Listing 1 and Listing 2,
respectively, is legitimate in NGINX, so debloating and system call
filtering mechanisms cannot protect these system calls from being
weaponized. These attacks only assume the existence of a mem-
ory corruption vulnerability such as CVE 2013-2028 (NGINX) or
CVE-2014-0226 (Apache).
(1) execve(). Listing 1 shows NGINX function ngx_execute_-
proc(), which legitimately uses the execve system call. This NG-
INX function is intended to update and replace thewebserver during
runtime. In particular, execve is a highly sought after system call
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1 // nginx/src/os/unix/ngx_process.c
2 static void ngx_execute_proc(ngx_cycle_t *cycle, void *data){
3 ngx_exec_ctx_t *ctx = data;
4 // Legitimate NGINX usage of execve system call
5 if (execve(ctx->path, ctx->argv, ctx->envp) == -1) {
6 ...
7 }
8 exit(1);
9 }
10 // nginx/src/core/ngx_output_chain.c
11 ngx_int_t ngx_output_chain(ngx_output_chain_ctx_t *ctx,
12 ngx_chain_t *in){
13 ...
14 if (in->next == NULL &&
15 ngx_output_chain_as_is(ctx, in->buf) ) {
16 return ctx->output_filter(ctx->filter_ctx, in);
17 }
18 ...
19 }

Listing 1: Legitimate use of the execve system call in NGINX.

1 // nginx/src/http/ngx_http_variables.c
2 ngx_http_variable_value_t *ngx_http_get_indexed_variable(
3 ngx_http_request_t *r, ngx_uint_t index){
4 ...
5 if (v[index].get_handler(r, &r->variables[index],
6 v[index].data) == NGX_OK) {
7
8 ngx_http_variable_depth++;
9 if (v[index].flags & NGX_HTTP_VAR_NOCACHEABLE) {
10 r->variables[index].no_cacheable = 1;
11 }
12 return &r->variables[index];
13 }
14 ...
15 return NULL;
16 }

Listing 2: Snippet of NGINX code that can be compro-

mised to reach and call the mprotect system call else-

where by corrupting index in vulnerable code pointer

v[index].get_handler().

for attackers; if it can be reached, attackers may invoke arbitrary
code (e.g., shell) and assume control of the victim machine.

There are two attack vectors against the execve system call. An
attacker can reach the execve system call by hijacking the intended
control flow (e.g., corrupting a function pointer or return address) if
a CFI-style defense is not deployed. Or she can corrupt the system
call arguments (e.g., ctx->path, ctx->argv) to launch a program
illegitimately if no data integrity mechanism is used.

This attack scenario leverages an argument-corruptible indirect
call site in the victim program such as ctx->output_filter (List-
ing 1, Line 16) in the function ngx_output_chain(). The function
pointer at this callsite is maliciously redirected to the function ngx_-
execute_proc(), which contains the desired execve call. This is
followed by corruption of the global ctx object, where it is set to
attacker controlled values to enable arbitrary code execution.

Our call-type context allows only a direct call of the execve
system call in NGINX. Also, the control path to ngx_execute_-
proc() is rarely used, only when a runtime update is necessary,
so there are limited ways to reach ngx_execute_proc(). Our
control-flow context enforcement, in tandem with the call-type
context, is sufficient to catch such control-flow hijacking of the
execve system call. Additionally, our argument integrity context
can also detect the corrupted system call arguments (e.g., ctx) to
block this attack proposed by Control Jujutsu [38].

(2) mprotect(). Listing 2 is another NGINX code snippet that
can be used maliciously. Here, the statement v[index].get_-
handler(...) (Listing 2, Line 5) is found within the function
ngx_http_get_indexed_variable(). This statement is intended
to be used as a generic handler for NGINX indexed variables that
selects the appropriate callee from an array of structures with func-
tion pointers. Compared to our first attack scenario, mprotect does
not need to be present within the v[] array to be reached.

An attacker can illegitimately reach an illegal offset beyond the
v[] array by corrupting index and thus call the mprotect system call
without manipulating pointer values. mprotect can be weaponized
to change the protections of an attacker controlled memory region.
To this end, she can corrupt r (or $rsi) and v[index].data (the
third argument defining the permission) to PROT_EXEC|PROT_-
READ|PROT_WRITE.

This attack scenario is able to bypass both code and data pointer
integrity (e.g., CPI [60]) as described in the NEWTON attack frame-
work [93]. Instead of corrupting code and data pointers, the attack
relies on finding a callsite that is capable of being manipulated by
non-pointer values. Here, the non-pointer variable index is manip-
ulated to make the target address of the array v[index].get_-
handler go beyond the array bounds and be redirected to mprotect.
This callsite’s three arguments r, &r->variables[index], and
v[index].data are also all controllable via non-pointer variables.
This allows the callsite to be crafted to an attacker desired function
with malicious arguments.

Bastion blocks this attack from the perspective of the system
call attempting to be invoked. Our control-flow context in tan-
dem with the call-type context easily detects this control-flow hi-
jacking reaching mprotect, whereas CFI and CPI type defenses
would not detect this attack. mprotect is never invoked indirectly
in this application, and is never assigned to get_handler(), vi-
olating call-type and control-flow contexts. Moreover, our argu-
ment integrity context can detect that the leveraged variables
r, &r->variables[index], and v[index].data are illegitimate and
never used by any legal system call invocation.

4 THREAT MODEL AND ASSUMPTIONS

We assume a powerful adversary with arbitrary memory read and
write capability by exploiting one or more memory vulnerabili-
ties (e.g., heap or stack overflow) in a program. We assume that
common security defenses – especially Data Execution Prevention
(DEP) [53, 67] and (coarse-grained) Address Space Layout Ran-
domization (ASLR) [88] – are deployed on the host system. Hence
attackers cannot inject or modify code due to DEP. We also assume
a shadow stack will be employed (e.g., CET [83]) as this technol-
ogy is mature [28, 35] and is now available in hardware [62]. We
assume that the hardware and the OS kernel are trusted, especially
secomp-BPF [56] and the OS’s process isolation. Attacks targeting
the OS kernel and hardware (e.g., Spectre [59]) are out of scope.

We focus on thwarting a class of attacks exploiting one or more
(sensitive) system calls in their attack chain. This is because core
attacker goals are to issue one or more (sensitive) system calls.
System calls are the primary means to interact with the host OS.
Attacks are therefore ineffective if they do not have access to these
system calls [29]. For example, Göktas et al. [44] need to change
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Table 1: Classification of sensitive system calls commonly

leveraged by attackers.We classify each security-critical sys-
tem call with the attack vector that commonly abuses it.

System Call Classification Applicable System Calls

Arbitrary Code Execution execve, execveat, fork, vfork, clone, ptrace

Memory Permissions mprotect, mmap, mremap, remap_file_pages

Privilege Escalation chmod, setuid, setgid, setreuid

Networking socket, bind, connect, listen, accept, accept4

the permissions of an existing memory area (e.g., mprotect) to
achieve their attack goals. Therefore Bastion protects a subset of
available system calls (Table 1) that can allow an attacker escape
beyond the scope of an application to obtain control over the host
system. Bastion concentrates on a subset of system calls as not all
system calls perform meaningful security-critical actions. Likewise,
Bastion protects a subset of data connected to system calls, instead
of all program data.

5 BASTION DESIGN OVERVIEW

Bastion aims to strengthen the integrity surrounding sensitive sys-
tem calls by enforcing the three proposed contexts (i.e., Call-Type,
Control-Flow, and Argument Integrity), such that attacks leverag-
ing system calls can be mitigated. Similar to prior defenses [33, 37,
40, 48, 78, 92], we choose 20 sensitive system calls (Table 1). We
chose these system calls such that Bastion can successfully de-
fend against attacks that achieve arbitrary code execution, memory
permission changes, privilege escalation, or rogue network recon-
figuration. Note, this list can be easily extended to include other
system calls.

As illustrated in Figure 1, Bastion consists of two core compo-
nents: (1) a Bastion-compiler pass, which performs context analy-
sis, instrumentation, produces a Bastion-enabled binary, and gen-
erates context metadata, and (2) a Bastionmonitor, which enforces
system call contexts during runtime. We now explain Bastion’s
compiler (§6) and runtime monitor (§7) in detail.

6 BASTION COMPILER

Our Bastion compiler derives the necessary information for proper
enforcement of our system call contexts. Bastion also leverages
a light-weight library API for dynamic tracking of sensitive data
related to the argument integrity context to properly track relevant
system call arguments. We now describe our program analysis for
each context and creation of a Bastion-enabled binary.

6.1 Analysis for Call-Type Context

To enforce the call-type context, the Bastion compiler analyzes
a program and classifies system calls in the program into three
categories: (1) not-callable, (2) directly-callable, and (3) indirectly-
callable types, as discussed in §3.1. It analyzes the entire program’s
LLVM IR instructions and checks all call instructions. If a system call
is a target of a direct function call, the Bastion compiler classifies
it into a directly-callable type. If the address of a system call is taken
and used in the left-hand-side of an assignment, that system call
can be used as an indirect call target, and the Bastion compiler
classifies it as an indirectly-callable type. Note that a system call can

Table 2: Bastion library API for argument integrity con-

text. Bastionmanages shadow copies of sensitive variables

(ctx_write_mem) and binds memory-backed (direct or ex-

tended) arguments and constant arguments (ctx_bind_mem_X,

ctx_bind_const_X) to a specific position (X-th argument) of a

system call callsite.

API Description

ctx_write_mem(p,size) Update the shadow copy of p in size
ctx_bind_mem_X(p) Bind a memory p to X-th argument
ctx_bind_const_X(c) Bind a constant c to X-th argument

be both directly-callable and indirectly-callable. All other arbitrary
system calls not belonging to either type are set as not-callable.
Any attempt by an attacker to reach a not-callable system call,
security-sensitive or not, is not permitted by Bastion.

After this analysis is completed, the Bastion compiler generates
metadata which contains, (1) pairs of system call numbers and their
call type, and (2) a list of legitimate indirect callsites (i.e., offset in
a program binary). This metadata is used by the Bastion runtime
monitor to enforce the call-type context.

6.2 Analysis for Control-Flow Context

Bastion uses the control-flow context to prevent control-flow hi-
jacking attacks that illegitimately reach system calls. Enforcement
of the control-flow context is performed only when a system call
is invoked. Our approach is different from conventional CFI tech-
niques, which enforce the integrity of every indirect control-flow
transfer.

Bastion analyzes a control-flow graph (CFG) of the entire pro-
gram to identify all function callee→caller relationships that reach
system call callsites. For each system call callsite in the CFG, the
Bastion compiler recursively records all callee→caller associa-
tions. Recursive analysis stops once reaching either main() or
an indirect function call. The Bastion runtime monitor verifies
callee→caller relations until the bottom of the stack (i.e., main), or
an indirect callsite, by unwinding stack frames.

With the call-type context and control-flow context in tandem,
Bastion verifies that control-flow reaching a system call follows
(1) legitimate direct callee-caller relations and (2) is a legitimate
indirect call from a valid indirect callsite. Once analysis for control-
flow context is done, Bastion generates metadata which consists
of the pairs of callee and caller addresses in a program binary.

6.3 Analysis for Argument Integrity Context

Lastly, the Bastion compiler analyzes a program to enforce argu-
ment integrity for system calls. Note that this is the only context that
requires instrumentation. We now discuss what variables should
be protected (§6.3.1), how to check if an argument is compromised
(§6.3.2), how our instrumentation achieves dynamic tracking of
arguments (§6.3.3), and what metadata is generated (§6.3.4).

6.3.1 Protection Scope. In order to properly enforce argument in-
tegrity, Bastion needs to check not only system call arguments but
also an arguments’ data-dependent variables. We collectively call
these protected variables as sensitive variables. Figure 2 shows how
Bastion enforces the argument integrity context for each of the
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- Is this system call used in the program?
- Is this system call indirectly callable?

Call-Type Analysis

- What are valid CFG paths for this system call?

Control-Flow Graph (CFG) Analysis

- What are sensitive variables of the system call 
arguments for each system call call-site?

Argument Integrity & Sensitive Variable Analysis

Source
Code

Bastion
Library

Bastion Compiler Analysis & Instrumentation Bastion Runtime Monitor

Bastion
Protected

Binary

Bastion
Generated
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Figure 1: Design overview of Bastion. At compile time, Bastion analyzes and generates a program’s context metadata. For

call-type and control-flow contexts,Bastion generates staticmetadata. For the argument integrity context,Bastion generates

metadata for static argument values (e.g., constants) and instruments the program to enable tracking of dynamic argument

values. At runtime, the Bastion monitor hooks on all invocations of sensitive system calls and verifies all three contexts of

the system call.

constant global variable local variable caller parameter

1 void   foo (   int   f0,   char   * f1,   int   f2   )   {
2    int   flags   =   MAP_ANONYMOUS | MAP_SHARED;
3    // ctx_write_mem(&flags, sizeof(int));
4    // ...
5    // ctx_bind_mem_3(&flags);
6    bar(   x1,   x2,   flags   );
7    // ...
8 }
9
10 void   bar (   int   b0,   char   * b1,   int   b2   )   {
11    // ctx_write_mem(&b2, sizeof(int));
12    int   prots   =   PROT_READ   |   PROT_WRITE;
13    // ctx_write_mem(&prots, sizeof(int));
14    // ...
15
16    // ctx_bind_const_1(NULL);
17    // ctx_bind_mem_2(&gshm->size);
18    // ctx_bind_mem_3(&prots);
19    // ctx_bind_mem_4(&b2);
20    // ctx_bind_const_5(-1);
21    // ctx_bind_const_6(0);
22    mmap(   NULL ,   gshm - > size,   prots,   b2,   -1 ,   0 );
23    // ..
24 }
25

Figure 2: Bastion instrumentation for argument integrity.

Protection of memory-backed arguments is augmented

using field-sensitive use-def analysis (size field of gshm,

b2←flags) at an inter-procedural level.

arguments in the mmap system call. At Line 22, NULL, -1, and 0 are
constant arguments; gshm->size, prots, and b2 are memory-backed
arguments; flags is a data-dependent sensitive variable, which is
passed from the function foo.

6.3.2 Checking Argument Integrity. In order to verify the argu-
ment integrity for each system call, Bastion adopts data value in-
tegrity [50] for each sensitive variable. Bastionmaintains a shadow
copy of the sensitive variable’s legitimate value in a shadow mem-
ory region and updates the shadow copy whenever the sensitive

variable is updated legitimately. Before a system call is invoked,
Bastion binds each argument to a certain position for the system
call so the Bastion runtime monitor can check argument integrity
using the Bastion-maintained shadow copy of the respective sen-
sitive variable.

The Bastion runtime library provides the API shown in Table 2.
ctx_write_mem(p,size) updates the shadow copy of a sensitive
variable located at address p with size. Note that a constant argu-
ment (e.g., NULL) does not need to have a shadow copy, because its
legitimate value is determined statically at compile time. Hence
ctx_write_mem is only used for memory-backed sensitive variables
(e.g., gshm->size, prots, b2, and flags in Figure 2). For argument
binding, ctx_bind_mem_X(p) binds a memory-backed sensitive
variable at p to the X-th argument of the associated system call
callsite. Similarly, ctx_bind_const_X(c) binds the constant value c
to the X-th argument of the callsite. Note that binding is applied to
both system call callsites as well as callsites passing sensitive vari-
ables (e.g., bar() callsite, Line 6 in Figure 2). We note that it is not
necessary to instrument if an argument is a direct or extended argu-
ment as such a distinction is system call & position-specific. Instead,
Bastion’s monitor can recover the system call being verified so we
design the monitor to handle this distinction, further minimizing in-
strumentation. For example, if Bastion’s runtime monitor discerns
execve is being verified, it knows the first argument of execve is an
extended argument, and thereby will automatically verify not only
the pointer value but also pointee memory contents for only the
first argument, while the remaining arguments will be verified as
direct arguments. To add, because the list of sensitive system calls
is short, it is easy to specialize the rules for these arguments.

6.3.3 Sensitive Variable Instrumentation. At a high level, Bastion
compiler performs field-sensitive, inter-procedural analysis to iden-
tify all sensitive variables, including data-dependent variables. To
identify all sensitive variables, the Bastion compiler analysis per-
forms three steps. First, it enumerates all variables used in system
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call arguments. These variables are the initial set of sensitive vari-
ables. Second, it performs a backward data-flow analysis, traversing
the use-def chains to derive any other variables used to define sen-
sitive variables. Such newly identified data-dependent variables are
added to the set of sensitive variables. Third, if there is a write to
a field of a struct (e.g., size field of gshm in Figure 2), that write is
added to the sensitive variables. Analysis repeats the second and
third steps until no new sensitive variables are found. Note this
field-sensitive analysis is also effective for tracking sensitive global
and heap variables.

Bastion first follows and instruments the callsite’s system call
argument variables via intra-procedural analysis. If an argument
variable is updated by a caller function’s parameter (e.g., b2←flags
in Figure 2), Bastion adds the caller parameter to the sensitive
variables and performs inter-procedural analysis between the caller
and callee for the caller’s parameter (e.g., flags in Figure 2). This
process is done recursively until an origin for the sensitive variable’s
use-def chain is found.

Once all sensitive variables are identified, Bastion instruments
ctx_write_mem after any memory-backed sensitive variable store
to keep its shadow copy up-to-date. Before each sensitive sys-
tem call callsite, Bastion instruments ctx_bind_mem_X or ctx_-
bind_const_X to bind an arguments to their respective argument
position X. Regarding the analysis of extended arguments, Bastion
instruments all possible use-def chains. While this may incur more
instrumentation, it does not lower security guarantees and we did
not observe any additional performance overhead. In practice, the
call depth to set system call arguments is fairly shallow – within
the same function or only a few functions away.

Even if an attacker happens to skip our instrumentation, since
non-system call relevant control-flow is not monitored or enforced
by Bastion, malicious intent can still be detected by Bastion. In
this case, legitimate system call argument values will not have been
properly updated to their expected values.

6.3.4 Bastion-compiler Generated Metadata. In the case of argu-
ment integrity context metadata, the compiler specifies an entry for
each sensitive system call callsite. Each callsite entry includes the
callsite file offset and the argument types (i.e., constant vs. memory-
backed arguments, direct vs. extended arguments). For a constant
argument, the expected value is recorded as well. For a memory-
backed argument, the argument index denotes that a bound value
should be retrieved from the Bastion shadow memory region and
compared with the value in an argument register (e.g., $rdi, $rsi,
$rdx).

7 BASTION RUNTIME MONITOR

The Bastionmonitor enforces all three of our proposed system call
contexts at runtime. We specifically design the Bastionmonitor as
a separate process from the application being protected. In doing
so, attackers are unable to avoid Bastion’s runtime hooks that
occur at sensitive system call invocations. We now describe how
the monitor is initialized and how each context is enforced.

7.1 Initializing the BastionMonitor

Loading metadata. The Bastion monitor is invoked with a tar-
get application binary path. The monitor retrieves ELF, DWARF, and

linked library file information to recover symbol addresses. It then
loads Bastion context metadata into the monitor’s memory.
Launching a Bastion-protected application. After loading
metadata, Bastion performs fork to spawn a child process where
the child runs the Bastion-enabled application after synchroniza-
tion is setup by the monitor. Specifically, Bastion initializes a
shadow memory region under a segmentation register ($gs in
Linux) for shared use between the application process and the
Bastionmonitor process. Bastion also initializes seccomp [54, 56]
to trap on sensitive system calls in the child process and ptrace [64]
to access the application’s state (including the shared shadow re-
gion attached to the application’s virtual address space). Once both
the target application and Bastion are synchronized, the Bastion
monitor allows the application to proceed and begins monitoring.
Then, any sensitive system call invocation attempt will trap the
Bastion monitor to perform context integrity verification by pok-
ing the application’s execution state, before allowing the system
call to be executed. Otherwise, Bastion monitor rests in an idle
state until the next sensitive system call is invoked.
Trapping a system call invocation. The Bastion monitor ini-
tializes a custom seccomp-BPF filter to trap on the application’s sen-
sitive system call invocations using call-type metadata. SECCOMP_-
RET_ALLOW is specified for all non-sensitive system calls to ignore
them when invoked, while SECCOMP_RET_KILL disables any not-
callable system calls. SECCOMP_RET_TRACE is specified for directly-
and indirectly-callable system calls so these system calls can be
verified by the Bastionmonitor. Note that a child process or thread
spawned by a Bastion-protected application has the same seccomp
policy as its parent process and is protected by the same Bastion
monitor process.
Accessing application state & shadowmemory. The Bastion
monitor needs to retrieve an application’s runtime information
and its shadow memory to verify integrity of the system call con-
texts before allowing the execution of a sensitive system call. The
Bastion monitor retrieves current register values and system call
number via ptrace. It uses process_vm_readv [55] to access arbi-
trary memory in the application’s address space, including stack,
heap, and the shadow memory region.

As discussed, shadow memory is initialized when a Bastion-
protected application is launched and belongs to the application’s
address space. It is an open-addressing hash table maintaining a
shadow copy (i.e., legitimate value) of a sensitive variable and argu-
ment binding information for the argument integrity context. The
key to access this hash table data is an address; the sensitive vari-
able address and callsite address are used to access its shadow copy
and argument binding information, respectively. Note Bastion’s
shadowmemory region relies on sparse address space support of the
underlying OS like metadata store designs in prior studies [50, 60].

7.2 Enforcing Call-Type Context

For call-type context, the Bastionmonitor retrieves the system call
number and the program counter (rip) where the system call is in-
voked using ptrace. The Bastion monitor uses the rip to retrieve
and check the call type of the callsite from its metadata. For exam-
ple, the Bastion monitor decodes the call instruction at Line 22
in Figure 2 using rip to determine if the mmap call was made direct
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or indirect. If the call type is allowed, Bastion continues to the
next context check. Otherwise, the Bastion monitor assumes this
is an attack attempt and immediately kills the protected application
and gracefully exits.

7.3 Enforcing Control-Flow Context

For control-flow context, the Bastion monitor retrieves a copy of
the current stack trace when a system call attempt is made and
verifies that the current call stack adheres to the CFG metadata,
represented as a list of callees and their respective valid callers. The
Bastion monitor unwinds the retrieved stack frame to get each
function callsite offset. It then checks if the unwound caller is in
the valid caller list of the callee in the CFG metadata. For example,
in Figure 2, function foo() is a valid caller of function bar(). This
is iteratively performed until the entire stack has been vetted or
an indirect call is encountered. When handling an indirect call,
Bastion ends verification at this point and verifies the partial stack
trace encounteredmatches the expected one derived at compile time.
Thus, there are no false-positives or false-negatives. If a mismatch
in a control-flow transition is found, the Bastion monitor assumes
this is a control-flow hijacking attempt to illegitimately reach this
system call, and kills the application, as done for the call-type
context.

7.4 Enforcing Argument Integrity Context

For argument integrity context, the Bastion monitor verifies in-
tegrity of all sensitive variables in the current call stack. Take Fig-
ure 2 as an example. At function bar()’s stack frame, the Bastion
monitor verifies all bound constant variables (i.e., NULL, -1, 0) and
memory-backed variables (i.e., gshm->size, prots, b2). Once check-
ing the current stack frame is done, it unwinds the stack and verifies
function foo()’s sensitive variable (i.e., flags). For each callsite, the
Bastion monitor uses the current rip value to retrieve the associ-
ated argument integrity context metadata reporting types of each
argument (constant vs. memory-backed arguments) to know how to
verify it. Additionally, recall from §6.3.2, the monitor automatically
processes each argument as direct or extended as needed. Partic-
ularly for non-system call callsites, Bastion also uses argument
integrity context metadata to determine which arguments need to
be verified. For each callsite’s sensitive argument, the Bastionmon-
itor compares the register (actual) argument value to the Bastion-
traced value retrieved from shadow memory. Bastion iteratively
traverses all function frames currently on the stack. If values match,
the arguments are legitimate and the system call can proceed. Oth-
erwise, the Bastion monitor kills the application and concludes
runtime monitoring.

8 IMPLEMENTATION

We implemented Bastion on Linux x86-64 v5.19.14. Bastion anal-
ysis and instrumentation is implemented as an LLVM Module
pass in 3,939 lines of code (LoC). Bastion’s C runtime library
(659 LoC) implements memory management functions to enable
the monitor to read and bind arguments throughout the entire
stack frame. All library functions are inlined to maximize per-
formance. The Bastion runtime monitor is a C-program (7,313
LoC). It leverages seccomp-BPF and ptrace for triggering system

call enforcement. Bastion also employs CET [83] a hardware-based
shadow stack by specifying compiler flag -fcf-protection=full.
Intel Tiger Lake and AMD Ryzen 7 processors onwards [62] with
Glibc v2.28+ [61, 65], Binutils v2.29+ [84], and Linux kernel v5.18+
fully support CET.

9 EVALUATION

In this section, we evaluate how effective Bastion’s system call
contexts are. We measure the performance overhead of Bastion
with three real-world applications: the NGINX web server [14],
the SQLite database engine [85], and vsftpd [21], an FTP server.
Our evaluation includes partitioning the individual costs of each
Bastion system call context, examining the cost-benefit analysis
for each as well as reporting static and runtime statistics.

9.1 Evaluation Methodology

Evaluation setup. We ran all experiments on an 8-core (16-hard-
ware thread) machine featuring an AMD Ryzen 7 PRO 5850U pro-
cessor and 16 GB DDR4 memory. All benchmarks were compiled
with the Bastion LLVM compiler. Results are reported average
over five runs.
Applications. We ran NGINX, SQLite, and vsftpd as these real-
world applications are widely deployed and as such, they are often
victim to attack. Also, these are I/O-intensive and system call-heavy
applications.

9.2 Performance Evaluation

For the performance evaluation of Bastion, we report both the rel-
ative performance overhead compared to the unprotected baseline
version (Figure 3) as well as the raw performance numbers of all
three applications (Table 3). We ran all evaluations with Address
Space Layout Randomization (ASLR) [88] enabled as Bastion is
based around relative-addressing and has no incompatibility issues
with ASLR-based defenses. Before applying Bastion, we enabled
CET and compared the runtime overhead compared to the baseline
version. For all three applications, we observe CET incurs negli-
gible overhead. Finally, we observed that the initialization cost of
Bastionmonitor is always negligible (on the order of ten to twenty
milliseconds, e.g., ≈21 ms for NGINX).
NGINX. To test NGINX, we use wrk [43], a HTTP benchmarking
tool. Wrk sends concurrent HTTP requests to a web server and mea-
sures throughput. We place the wrk client on a different machine,
but on the same local network as the NGINX webserver. NGINX
is configured to handle a maximum of 1,024 connections per pro-
cessor and have 32 worker threads. We measure throughput for a
20-second run. wrk spawns the same number of threads as NGINX’s
configured worker count where each wrk thread generates HTTP
requests for a 6,745-byte static webpage.

The runtime overhead for NGINX minimally increased as each
Bastion context was enabled. The overhead when applying full
Bastion protection (all three contexts enabled, Call-Type, Control-
Flow, & Argument Integrity) never incurred more than 0.60% degra-
dation compared to the unprotected NGINX baseline. Figure 3
shows this breakdown in more detail. In NGINX, protecting the
subset of 20 sensitive system calls with just the monitor adds barely
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Figure 3: Performance overhead ofBastion for NGINX, SQLite, and vsftpd. All values are compared to an unprotected baseline

vanilla version. For reference to state-of-the-art, we also include the individual overhead for (coarse-grained) LLVM Control-

Flow Integrity (LLVM CFI) [87] and Control-Flow Enforcement Technology (CET) [83].

Table 3: Benchmark numbers for NGINX, SQLite, and vsftpd on which Figure 3 is based on. We measure NGINX’s throughput

of data (MB/s). SQLite is evaluated using DBT2 [9] which records New Order Transactions Per Minute (NOTPM). Lastly, for

vsftpd, we measure seconds elapsed to download a 100 MB file. For NGINX and SQLite, higher is better, whereas lower is better

for vsftpd.

Runtimes with Hardware/Software Mitigations

Application Unprotected LLVM Control-flow Control-flow Enforcement

CET+DI CET+DI+CF CET+DI+CF+AI

Vanilla Integrity (LLVM CFI) Technology (CET)

NGINX (MB/sec) 110.61 110.54 110.52 110.42 110.28 109.94
SQLite (NOTPM) 37,107.41 36,156.15 36,961.91 36,764.50 36,560.02 36,360.85

vsftpd (sec) 10.75 10.93 10.77 10.79 10.81 10.93

≈1% overhead. As expected, the Argument Integrity context adds
the most overhead following the monitor itself since this context is
the most complex.

Analysis of NGINX source code reveals that NGINX utilizes a
vast majority of sensitive system calls (e.g., mprotect, mmap) during
its initialization phase while seldom using any sensitive system
calls when idle or processing requests. This results in Bastion
rarely being triggered during runtime. Table 4 shows combined
initialization and runtime statistics of all (sensitive) system calls
invoked during benchmarking; it reveals that only a call to accept4
is made per-request and dominates the system call invocation count.
Additionally, evaluating NGINX showed that for all system call
invocations (not including those originating from a library), the
average call-depth is only 5.2 frames, with 4 and 9 being minimum
and maximum stack call-depths encountered, respectively.
SQLite. SQLite [85] is a widely deployed, transactional SQL data-
base engine. To test the performance throughput of SQLite, we use
the DBT2 [9] database transaction processing benchmark. DBT2
mimics a mix of read and write SQL operations for large data
warehouse transactions. We ran DBT2 with its default configura-
tion with a 10 second new thread delay and a 10 minute workload
duration. We measure DBT2’s number of new-order transactions
per-minute (NOTPM) for performance.

Figure 3 shows the Bastion performance breakdown for each
context. Adding Call-Type and Control-Flow context checking in-
creases Bastion’s overhead to 0.92% and 1.48%, respectively. Subse-
quently, adding Argument Integrity context checking for SQLite’s
system calls brings Bastion’s overhead to 2.01%. As in NGINX,

Argument Integrity context enforcement contributes the most over-
head, relative to Call-Type and Control-Flow contexts. However,
note that since our Argument Integrity context strategically only
requires tracing and enforcing value integrity for select sensitive
variables used as system call arguments, this contexts performance
overhead is magnitudes smaller than overhead imposed by conven-
tional application-wide DFI-style defenses.

SQLite largely uses system calls to initialize and setup its worker
threads based off the DBT2 configuration. We expect overhead is
further amortized for SQLite in a long standing real-world appli-
cation setting. Table 4 shows system calls invoked during SQLites
runtime. The contrast in Argument Integrity costs can be attributed
to differences in system call usage and argument patterns. SQLite
relies more on mprotect compared to NGINX or vsftpd.
VSFTPD. vsftpd is evaluated using dkftpbench [10], an FTP bench-
mark program. dkftpbench simulates users downloading files from
a FTP server. We place the dkftpbench client on the same machine
as Bastion protected vsftpd. dkftpbench is configured to fetch a
100 MB file from vsftpd launching clients one after another for a
120 second duration. All other options are left as default.
Dkftpbench showed negligible runtime overhead for all Bastion

contexts compared to the unprotected baseline. In the worst case,
Bastion incured 1.65% overhead.

Table 4 substantiates this performance overhead, showing that
vsftpd invokes system calls far fewer times than either NGINX or
SQLite. Similar to NGINX, accept accounts for most of Bastion
monitor checks. When designing Bastion to support accept and
accept4, we noted that only these two system calls had a more
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Table 4: Sensitive system call usage from benchmarking.

Application

NGINX
(32 workers) SQLite vsFTPd

execve 0 0 0
execveat 0 0 0
fork 0 0 0
vfork 0 0 0
clone 96 48 36
ptrace 0 0 0
mprotect 334 501 7
mmap 534 42 33
mremap 0 0 0
remap_file_pages 0 0 0
chmod 0 0 0
setuid 32 0 12
setgid 32 0 12
setreuid 0 0 0
socket 32 1 85
connect 32 0 8
bind 1 1 77
listen 2 1 77
accept 0 11 87
accept4 5,665 0 0
Total Bastionmonitor hook 6,713 557 433

Table 5: Instrumentation statistics for Bastion.

Application NGINX SQLite vsftpd

Total # application callsites 7,017 12,253 4,695
Total # arbitrary direct callsites 6,692 12,026 4,688
Total # arbitrary in-direct callsites 325 227 7
Total # sensitive callsites 26 13 12
Total # sensitive system calls called indirectly 0 0 0
ctx_write_mem() 5,226 1,337 204
ctx_bind_mem() 43 18 33
ctx_bind_const() 18 13 9
Total instrumentation sites 5,287 1,368 246

complex argument (e.g., struct sockaddr) compared to other sys-
tem call arguments. We therefore optimized the Bastion monitor
to support verifying this structure in a specific way to improve
argument integrity runtime.
System call statistics. Table 5 shows instrumentation statistics
regarding Bastion including the total number of sensitive system
call callsites and each Bastion API instrumentation count. This
table shows that sensitive system calls have a very small footprint
even in large production applications. Specifically, note the drastic
difference between the number of application callsites (Table 5, Row
1) compared to the number of sensitive system call callsites (Table 5,
Row 4). Consequently, Bastion’s instrumentation footprint is also
relatively small, with a maximum of 5,287 instrumentation points
in NGINX. A key finding is that in all three real-world applications,
sensitive system calls are never legitimately called indirectly via
a function pointer (Table 5, Row 5). This facet allows Bastion to
entirely invalidate attack schemes that rely on reaching system
calls from a corrupted pointer.

Comparison against CET and LLVM CFI. We also compared
Bastion with other state-of-the-art defenses, specifically LLVM
CFI (forward edge protection) and CET (backward edge protection).
Results are depicted in Figure 3 and Table 3. Note that we were not
able to simultaneously enable CET with LLVM CFI as LLVM CFI
does not function properly when paired with CET.

CET works by maintaining a secondary (shadow) stack that
cannot be directly modified by applications. Upon returning from a
function, the CPU compares return addresses in the shadow stack
and the normal stack. If these two addresses differ, a protection fault
is raised. Our results show that CET incurs negligible overhead (<
0.5%).

LLVM CFI [87] is a coarse-grained CFI technique. Our results
show that LLVM CFI incurs low performance overhead (< 3%).
LLVM CFI performs verification at every indirect callsite while
Bastion is designed to only perform verification at sensitive system
call invocations. LLVMCFI checks indirect and virtual function calls
only using function type information. Since it is not fine-grained, it
does not guarantee a unique target as in recent CFI works [48, 58].
Moreover, CFI does not have such a concept to check whether a
function is allowed to be called directly or indirectly as done for our
Call-Type context, nor does CFI verify argument integrity compared
to Bastion. Therefore Call-Type and Control-Flow contexts cannot
be directly replaced with CFI.
Summary. Our evaluation confirms our insights of sensitive sys-
tem call usage patterns being used sparsely. For all real-world ap-
plications tested, we see Bastion instrumentation and monitoring
for all three contexts incurs low (<3%) performance degradation.
Compared to related defense strategies, we are on par or better (e.g.,
7.88% - uCFI [48], 7.6% - OS-CFI [58], 2.7% - OAT [86]).

10 SECURITY EVALUATION

We conducted case studies with 32 attacks in Table 6, which include
ROP payloads, real-world CVE exploits, and synthesized attacks
recent attack strategies [34, 47, 81, 82, 93]. The results confirm that
even if one context is bypassed, another context in Bastion can
compensate and still prevent the attack vector from being viable.

10.1 ROP Attacks

While CET is now available on the newest processors from Intel
and AMD, older processors do not have a built-in shadow stack
defense mechanism. We now explain how Bastion can defend ROP
in the absence of CET.

ROP payloads work by stitching together various ROP-gadgets
present in a victim application to create their attack. Generally, they
will leverage one or more system calls (e.g., execve, mprotect) to
complete the attack.

ROP payloads can execute user (non-root) commands by lever-
aging the libc library call system (which internally calls fork and
execl system calls), and passing the arguments "/bin/sh". Or they
can directly leverage an exec-type system call, to create access to a
root shell. ROP payloads can also manipulate memory permissions
and abuse a memory corruption vulnerability by using mprotect
or chmod system calls to change memory or file permissions to be
executable (e.g., RWX) in order to setup their attacker directed script,
before pivoting the stack or code pointer to the start location.
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If the victim application does not use these system calls, Bastion
blocks these invocations with the Call Type context. Or if these
ROP payloads advance by directly manipulating control-flow and
variables to reach and prepare these system calls, including setting
flags to uncommonly used natively by applications (e.g., making a
memory region executable), Control Flow or Argument Integrity
contexts will detect these attacks.

10.2 Direct Attacker Manipulation of System

Calls

In this attack strategy, attacks go after system calls directly, crafting
attacks that setup callsites and arguments to desired values via code
pointer and variable corruption.

The CsCFI attack leverages mprotect to make the entire libc
readable, writable, and executable, revealing the code layout to
perform arbitrary code execution. AOCR’s Attack 1 instead lever-
ages open and write to reveal the code layout of NGINX to execute
arbitrary code. In both cases, Bastion’s Call-Type context blocks
these attacks. In the CsCFI attack, mprotect is never used by the ap-
plication. In Attack 1, open is legitimately used in NGINX, but only
ever as a direct call. Moreover, Bastion records all valid call-traces
for sensitive system calls as well as instrumenting all arguments
for sensitive system calls, allowing Bastion’s Control-Flow and
Argument integrity contexts to also detect the anomaly of being
called from an unexpected callsite with untraced arguments.

Several real-world CVE’s also fall under this category. While
they each individually affect different applications, they all rely
on inherent memory corruption vulnerabilities and abuse them
to maliciously manipulate program data including code pointers
and argument variables. Therefore, Bastion can address all these
CVE’s because they aim to achieve arbitrary code execution by
corrupting code pointers and arguments to point to system calls
that are either never used or only used via direct callsites.

In comparison to Bastion, LLVM CFI cannot defend against
either attack. Since LLVM CFI employs a coarse-grained defense
scheme, it only enforces that function calls match the static type
used at the callsite [87]. In the CsCFI attack, even though mprotect
is never used by the application, its address is still taken as this
system call is necessary to support dynamic loading of shared
libraries. Related, AOCR Attack 1 leverages code pointers whose
typematched to system calls open and write, allowing these control-
flow violations to bypass LLVM CFI.

10.3 Indirect Attack Manipulation of System

Calls

In this attack strategy, attacks evade popularly deployed defense
strategies such as CFI, CPI, and system call filtering. Such strategies
include attacks like full-function code re-use [38], data-oriented
attacks [32? ], and COOP [82].

The NEWTON CPI attack avoids corrupting any code or data
pointers. It corrupts the index variable of an array of function point-
ers to make the array index point to a system call location. Bastion
is able to defend against this attack with all three contexts. The
Call-Type context blocks the invocation of a system call never used
in the program code base. Similarly, Control-Flow and Argument
Integrity context will not have legitimate system call information

Table 6: Real-world and synthesized exploits blocked by

Bastion. ✓ denotes that a context can block an exploit, and

× indicates that an exploit can bypass the context.

CT: Call Type CF: Control Flow AI: Argument Integrity
Attack Violated Context

Category & Type CT CF AI

Return-oriented programming (ROP)

Execute user command [1, 3, 5, 7, 8, 11, 13, 15–20] × ✓ ✓

Execute root command [11] × ✓ ✓

Alter memory permission [2, 4, 6, 12] × ✓ ✓

Direct system call manipulation

NEWTON CsCFI Attack [93] ✓ ✓ ✓

AOCR NGINX Attack 1 [81] ✓ ✓ ✓

CVE-2016-10190 ffmpeg [75]
CVE-2016-10191 ffmpeg [76]
CVE-2015-8617 php [74]
CVE-2012-0809 sudo [70]
CVE-2013-2028 nginx [71]
CVE-2014-8668 libtiff v4.0.6 [73]
CVE-2014-1912 python-2.7.6 [72]

✓ ✓ ✓

Indirect system call manipulation

NEWTON CPI Attack [93] ✓ ✓ ✓

AOCR Apache Attack [93] × ✓ ✓

AOCR NGINX Attack 2 [81] × × ✓

COOP Against Google Chrome [34] × × ✓

Control Jujutsu against NGINX [38] × × ✓

for the corrupted callsite or arguments used thereby thwarting the
attack as well.

The AOCR Apache attack finds an indirect code pointer of an
exec function in ap_get_exec_line(). Because there is a legitimate
indirect call to exec, Bastion’s Call-Type context will be bypassed.
Instead, the hijacking of ap_get_exec_line() onto a corruptable
function pointer is what gives away the attack, and allows Bastion
to block it with the Control-Flow context.

Lastly, AOCR NGINX Attack 2 [81], COOP [82], and Control
Jujutsu [38] leverage inherent memory vulnerabilities as well as the
inherent program control-flow against itself to gain hijack control.

Compared to Bastion, LLVM CFI cannot defend against this
attack strategy – AOCR NGINX Attack 2, COOP, or Control Jujutsu
– as these attacks specifically leverage legitimate control-flow trans-
fers to reach security sensitive system calls. For instance, COOP
starts with a buffer over-flow filled with fake counterfeit objects
by the attacker and leverages virtual C++ functions that would
appear as benign execution to LLVM CFI by not violating type. In
AOCR NGINX Attack 2, with the help of the attacker-controlled
worker, the attacker only needs to corrupt global variables to cause
NGINX’s master process loop to call exec under attacker chosen
parameters.

In this case, Call-Type and Control-Flow contexts will seem
legitimate for Bastion. However, these attacks still need to corrupt
system call arguments to attacker directed values, thereby allowing
Bastion to detect and block these attack vectors. Compared to
LLVMCFI, Bastion employs the Argument Integrity context and is
therefore tighter in its constraints compared to CFI. For this reason,
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Bastion is able to defend against indirect attack manipulation
strategies.

11 DISCUSSION AND LIMITATIONS

11.1 Bastion under Arbitrary Memory

Corruption

In theory, a powerful adversary with arbitrary memory read/write
capability can circumvent all three of Bastion’s contexts. However,
in practice it will be very challenging particularly because our
analysis pass is able to statically determine most constraints – direct
vs. indirect call, legitimate stack traces, and constant arguments –
to successfully enforce correct system call invocation in a program.
For example, if mprotect() is used only with a constant value,
PROT_READ, in a program, then it is impossible to call mprotect()
with PROT_EXEC because such static constraints are maintained by
the monitor processor running in a separate address space; this
data is never available to the protected application. To bypass all
three of Bastion’s contexts, the attacker realistically would need
to perform arbitrary read/write many times to match the expected
context values without violating static constraints (e.g., constant
arguments). This is very challenging to carry out in real attack
scenarios, thus Bastion raises the difficulty to complete such an
attack.

11.2 Protecting Filesystem Related System

Calls

One promising extension of Bastion is protecting file system re-
lated system calls to prevent information disclosure attacks. The
main challenge is that this type of system call is called much more
frequently than Bastion’s sensitive system calls. To see the fea-
sibility of such an extension, we extended Bastion’s coverage to
include all file system related system calls and their variants.

We present the performance overhead of this extension com-
pared against the unprotected baseline in Table 7. Full Bastion
context checking (Row 3) incurs high overhead – e.g., 96.7% for
NGINX. To understand where this overhead comes from, we break
down Bastion into three sub-steps: 1) just hooking system calls
(Row 1) to measure seccomp overhead, 2) fetching the protected
program’s information using ptrace (Row 2), and 3) verification of
Bastion’s three contexts (Row 3). Our results show overhead of
hooking system calls (< 0.29%, Row 1) and full context checking
(< 0.82%, delta between Rows 2 and 3) is negligible. A majority of
overhead results from fetching protected process state using ptrace
(< 95.7%, delta between Rows 1 and 2) due to the additional context
switching overhead to access the protected program.

One approach to (almost) completely eliminate ptrace overhead
would be to run the Bastion monitor inside the kernel as either a
kernel module or via eBPF code. This solution would completely
resolve overhead incurred from context switching; by being within
the kernel, the Bastion monitor would now have transparent ac-
cess to the protected application’s process state to retrieve register
values, etc. With the optimization of replacing ptrace with in-
kernel execution, we can extend Bastion’s system call protection
scope with low performance overhead. Ultimately, Bastion can

Table 7: Bastion Performance overhead when file system-

related system calls (e.g., open, read, write, send, recv) and vari-
ants (e.g., openat, sendfile) are protected. The baseline is the
unprotected version. In this scenario, fetching process state

using ptrace contributes the most performance overhead.

Runtime & % Overhead Added Per Checkpoint

Bastion Configuration NGINX SQLite vsftpd

Bastion + file system syscalls 110.41 (0.15%) 36,993.27 (0.29%) 10.76 (0.08%)
(seccomp hook only)

Bastion + file system syscalls 4.56 (95.88%) 7,461.18 (79.89%) 10.95 (1.85%)
(fetch process state)

Bastion + file system syscalls 3.65 (96.70%) 7,419.50 (80.00%) 11.01 (2.41%)
(full context checking)

used as a foundational platform and be extended to implement de-
fense for a range of threat models in the future, such as information
disclosure.
11.3 Impact of Not Protecting of All System

Calls

We designed Bastion to deeply protect a subset of system calls that
have security implications (i.e., sensitive system calls). That being
said, Bastion’s Call-Type context can still sort out all not-callable
system calls in a program (§3.1) so they cannot ever be weaponized.
If an arbitrary (sensitive or not) system call is never used by an
application, the Bastion monitor can still enforce the Call-Type
context and disallow any use.

Not all system calls are security-critical (e.g., getpid) as they do
not perform any operation that can adversely affect the host system
for attacker gains. Even if uncovered, non-sensitive system calls
are used in an attack chain, an attacker should still exploit at least
one sensitive system call. In this way, Bastion is able to block the
attack by detecting unintended usage of a sensitive system call.

However, we do not claim that our sensitive system call selection
is “perfect”. Presently, there is no consensus of how to quantita-
tively assign a system call’s “danger level”. Thus far, this ongoing
effort has been empirically deduced from performing case studies
and examining real-world CVEs. Explicit system call classification
is sparse in literature; Bernaschi et al. [26] provides some guidance,
however their analysis is limited to buffer overflow-based attacks.
More recent work ranks system call risk based on using informa-
tion retrieval techniques in an exploit code analysis [52]. More
comprehensive analysis remains an interesting future direction.
12 RELATEDWORK

Since we already discussed the most closely related work in §2, we
discuss other related studies in this section.
Advanced system call filtering. Static filtering makes filter cre-
ation and usage more accessible via libraries (libseccomp [51]), au-
tomation (sysfilter [36]), or architecture portability (ABHAYA [77]).
Dynamic filtering improves soundness of system call filters using
automated testing [63, 94] or dynamic profiling (Confine [41]). Some
approaches leverage a temporal context [23, 42, 63] enabling specific
system calls during distinct execution phases. These approaches
are all coarse-grained and rely on whitelisting as a primary means
of defense. Bastion goes beyond specifying a whitelist of allowed
system calls, even if that whitelisting is made dynamic as in Tem-
poral Filtering [42]. Notably, there exist several CVE’s (e.g., Control
Jujutsu [38], AOCR [81]) capable of bypassing Temporal Filtering
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as these attacks leverage system calls still permitted in the applica-
tion’s serving phase. For this reason, Bastion is significantly more
secure than any coarse-grained system call filtering approach.
Data integrity. Data integrity seeks to protect data such that no
data in a program is corruptible either by tracing or employing a
secure data copy. Specialized data integrity narrows coverage to
protect control-dependent data (OAT [86]), developer annotated
data (Datashield [30]), or data passed as arguments in callsites (Saf-
fire [68]). Compared to these data integrity mechanisms, Bastion
only enforces argument integrity for sensitive variables.
13 CONCLUSION

This work is built on the insight that regardless of attack complex-
ity or end goal, a majority of attacks must leverage system calls to
complete their attack. Thus, we presented three specialized system
call contexts (Call-Type, Control-Flow, & Argument Integrity) for
securing their legitimate usage and implement them with our pro-
totype, Bastion. Evaluating the performance impact of Bastion
using system call-intensive real-world applications, we demonstrate
a low runtime overhead. This shows Bastion is a practical defense
on its own to block an entire attack class that leverages system
calls.
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