
SEVeriFast: Minimizing the root of trust for fast
startup of SEV microVMs

Benjamin Holmes∗
MIT CSAIL

Cambridge, MA, USA
Vassar College

Poughkeepsie, NY, USA
bcwh@csail.mit.edu

Jason Waterman
Vassar College

Poughkeepsie, NY, USA
jawaterman@vassar.edu

Dan Williams
Virginia Tech

Blacksburg, VA, USA
djwillia@vt.edu

Abstract
Serverless computing platforms rely on fast container ini-
tialization to provide low latency and high throughput for
requests. While hardware enforced trusted execution envi-
ronments (TEEs) have gained popularity, confidential com-
puting has yet to be widely adopted by latency-sensitive
platforms due to its additional initialization overhead. We
investigate the application of AMD’s Secure Encrypted Vir-
tualization (SEV) to microVMs and find that current startup
times for confidential VMs are prohibitively slow due to the
high cost of establishing a root of trust for each new VM.
We present SEVeriFast, a new bootstrap scheme for SEV

VMs that reevaluates current microVM techniques for fast
boot, such as eliminating bootstrap stages and bypassing
guest kernel decompression. Counter-intuitively, we find
that introducing an additional bootstrap component and
reintroducing kernel compression optimizes the cold boot
performance of SEV microVMs by reducing the cost of mea-
surement on the critical boot path and producing a minimal
root of trust. To our knowledge, SEVeriFast is the first work
to explore the trade-offs associated with booting confiden-
tial microVMs and provide a set of guiding principles as a
step toward confidential serverless. We show that SEVeriFast
improves cold start performance of SEV VMs over current
methods by 86-93%.
ACM Reference Format:
Benjamin Holmes, JasonWaterman, and DanWilliams. 2024. SEVer-
iFast: Minimizing the root of trust for fast startup of SEV microVMs.
In 29th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems, Volume 2 (ASPLOS
’24), April 27-May 1, 2024, La Jolla, CA, USA. ACM, New York, NY,
USA, 15 pages. https://doi.org/10.1145/3620665.3640424
∗Work done while at Vassar College

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).
ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0385-0/24/04.
https://doi.org/10.1145/3620665.3640424

1 Introduction
In today’s cloud, clients run applications on remote machines
with the assumption that providers will not collect or leak
their sensitive data. Trusted execution environments (TEEs)
like AMD Secure Encrypted Virtualization (SEV) [10] have
become popular because they remove the host from the trust
domain and allow secure computation in the cloud by run-
ning applications in enclaveswherememory is protected [12–
14, 19, 41, 42].

Meanwhile, fast VM boot is a hot topic in the effort to
reduce latencies of cloud applications [7, 15, 20, 24, 33, 47].
Serverless computing platforms [9, 22, 25, 34] are at the fore-
front of fast VM boot, leveraging lightweight virtualization
environments, ormicroVMs [7], to provide a transient unit of
execution with strong isolation, automatic scaling, and low
latency. Two key tenants of microVMs that allow them to
boot quickly are booting an uncompressed kernel, and remov-
ing extra bootstrap components. To bypass the cost of decom-
pression during boot, microVM monitors directly load an
uncompressed Linux kernel, called a vmlinux, rather than a
compressed bzImage. MicroVMs also do not boot with a BIOS
and skip legacy bootstrap steps by exploiting the fact that
VMs boot on a system that has already been bootstrapped.

However, we find that SEV is incompatible with microVMs
due to the high overhead of establishing trust in a new con-
fidential VM. Contrary to microVM principles for fast boot,
we find that adding a new bootstrap component and rein-
troducing kernel compression minimizes boot times under
SEV. Establishing a root of trust for a new SEV VM includes
encrypting and measuring a VM’s initial code/data before
entering the guest [6], which we call pre-encryption. One
or more pre-encryption operations construct a launch mea-
surement in the SEV hardware which is used as part of an
attestation report that is sent to a trusted third party (referred
to as the guest owner) during remote attestation and proves
to the guest owner that their VM was initialized as expected.
While vital to establishing trust, pre-encrypting the initial
contents of a microVM—the vmlinux—is prohibitively expen-
sive. Pre-encrypting the kernel, compressed or not, results in
overheads up to two orders of magnitude greater than state-
of-the-art microVM boot times. With this insight, we design

1

https://doi.org/10.1145/3620665.3640424
https://doi.org/10.1145/3620665.3640424


a new minimal bootstrap component to replace the kernel and
minimize pre-encryption time.
Avoiding pre-encrypting the kernel excludes it from the

launchmeasurement, whichmeans that a guest owner would
be unaware of a malicious kernel is running in their VM.
Fortunately, measured direct boot [36] has been introduced
as a way to verify the kernel’s integrity in the guest on the
CPU rather than the lower powered SEV hardware.Measured
direct boot is faster than pre-encryption, but still has a high
cost per-byte. We identify a fundamental trade-off between
decompression time and measurement time, and observe
that reintroducing kernel compression to a microVM boot with
SEV minimizes the overhead of verifying the kernel on the CPU
despite the added cost of decompression.

We propose SEVeriFast1, a new bootstrap design targeted
at optimizing the cold boot performance of SEV microVMs.
SEVeriFast produces a minimal root of trust using a spe-
cialized boot verifier that replaces the kernel as the initial
boot code in a microVM utilizing kernel compression to re-
duce overhead during measured direct boot, an out-of-band
kernel/initrd hash to take redundant computation off the
critical boot path, and optimized pre-encryption to minimize
pre-encryption time for critical boot-related data structures.

We have implemented SEVeriFast in the open source AWS
Firecracker2 Linux/KVM-based VMM, a modern hypervisor
targeting microVMs and serverless representing the state-
of-the-art for fast VM boot times. To our knowledge, we are
the first to implement support for SEV guests in a microVM
monitor. Furthermore, our boot verifier is a small stand-alone
Rust binary that loads an unmodified Linux kernel. By the
time of publication, we plan to have released source code for
all components of SEVeriFast.

The value proposition of VMMs like Firecracker is in their
ability to boot guests quickly to minimize latency and cost on
the part of the cloud provider. Our evaluation of SEVeriFast
shows that it boots SEV VMs 86%-93% faster than existing
approaches.

To summarize, we make the following contributions:

• The first breakdown of costs and fundamental trade-
offs associated with the SEV boot process;

• The design and implementation of SEVeriFast, a boot-
strap scheme and set of principles to guide the design
of an efficient confidential serverless platform; and

• The evaluation of SEVeriFast compared to existing
methods of booting SEV guests and state-of-the-art
microVMs with the identification of a bottleneck in
the SEV hardware that we plan to address as future
work.

1Pronounced ES-EE-Very-Fast
2https://github.com/firecracker-microvm/firecracker/

2 The Boot Process
In this section we outline the choices made by state-of-the-
art microVMs for fast boot and explain the current boot
process of an SEV guest. In the next section we show that
the two are incompatible due to the high latency of booting
an SEV guest.

2.1 MicroVMs
As cloud computing has grown in popularity, the field has
seen a shift from long-running VMs with full emulation
of traditional systems to more fine-grained units of execu-
tion. Containers [2, 18, 30] provide lightweight application
sandboxes that are isolated from the host, but VMs provide
stronger isolation guarantees. Lightweight VMMs have been
developed to bridge the gap between the speed of containers
and the isolation of VMs [7, 28, 33].
Serverless computing is a cloud computing paradigm in

which users submit a short-running, single-purpose function
to the cloud provider. In response to a trigger, the function is
executed in its own lightweight microVM to provide strong
isolation between functions [9]. In this model, cloud data
centers benefit from high density and throughput because
microVMs have small memory footprints, low CPU demand,
and short lifespans. The cost of booting a microVM is not
amortized by its runtime as it would be for traditional long-
running VMs [35], and depending on the workload, boot
time can dominate overall runtime [8, 11, 20, 37, 39, 45].
Moreover, serverless platforms like Amazon Lambda [9], Mi-
crosoft Azure Functions [34], and IBM Cloud Functions [25]
only charge users for the time their function spends execut-
ing, which is more incentive for providers to keep boot times
low.
Booting the guest kernel is typically handled by a guest

firmware/BIOS and a bootloader like GRUB, but modern
VMMs eliminate these steps in favor of direct kernel boot
to save boot time [7, 27]. For example, a common method
of booting Linux is to use a bzImage. A bzImage consists
of the kernel ELF file, also called vmlinux, compressed and
appended to a small bootstrap loader program that decom-
presses and loads the vmlinux. Compression has historically
been used to allow the kernel to be loaded into 1MB of real-
mode addressable memory while supporting many device
drivers and features, and remained popular because the I/O
time to read a vmlinux from a hard disk was greater than the
time it took to decompress a bzImage in memory. However,
when booting a bzImage on a system that has already under-
gone the bootstrap process, the bootstrap loader becomes
redundant. Additionally, the size of the kernel has a smaller
impact on microVM boot times because a vmlinux could be
read from a ramdisk or held in Linux’s buffer cache when
thousands of VM instances use the same kernel, which is
likely in a serverless use case. Because of this, decompressing
the kernel adds unnecessary time to the critical path [7, 24].

2



Modern VMMs bypass decompression and redundant boot-
strap steps by directly loading a vmlinux, leading to faster
boot times. Modern VMMs also exploit the fact that they
are running on an already bootstrapped system to do the
following on the guest’s behalf prior to boot:

1. Load the kernel ELF in one operation to the location
in guest memory where it will run

2. Set up important data structures for Linux to boot
(Linux boot_params, page tables, boot stack, etc.)

3. Skip the transition from real-mode to long-mode and
enter the guest at the kernel’s 64-bit entry point

Finally, Firecracker distributes microVM Linux guest kernel
configurations to decrease both the size and startup time of
a vmlinux, which is key to Firecracker’s low startup times.

2.2 Secure Encrypted Virtualization (SEV)
Under the typical cloud computing model, the hypervisor
has complete control over VM memory. Therefore, the guest
owner has to trust that the hypervisor is benevolent and
free from bugs that could lead to information leaks. SEV is a
hardware extension on AMD EPYC CPUs that protects data
from privileged attackers in secure enclaves by encrypting
the physical memory backing a VM. The extensions consist
of an encryption engine embedded in the memory controller
that transparently encrypts/decrypts data when given the
correct key and the Platform Security Processor (PSP), a
small low-powered ARM core integrated within the SoC
that handles key generation/management, establishing trust
during VM launch, and generating attestation reports used
for remote attestation.
More recently, extensions to SEV have been introduced

in the form of SEV-ES [5] (Encrypted State) and SEV-SNP
(Secure Nested Page Tables), where SEV-SNP is a superset of
all three versions. SEV-ES ensures that guest register state
is encrypted when it is saved during a world-switch. SEV-
SNP [1] introduced a new system-wide structure called the
Reverse Map Table (RMP), which holds page mappings from
system physical addresses to guest physical addresses, and
tracks ownership of guest pages to prevent the host from
writing to encrypted guest pages. When a write to guest
memory occurs, the RMP is checked after normal address
translation to ensure that the access came from the correct
owner. When the guest runs, it must first validate each page
it intends to use for encrypted memory. This is done via the
pvalidate instruction which sets the valid bit in the RMP
entry corresponding to the guest address being validated.
pvalidate can only be executed from within an SEV guest
and is the only way to validate a guest mapping. If the hyper-
visor changes a mapping, the hardware clears the valid bit
in the corresponding RMP entry. Then, if the guest tries to
access that page, a new hardware exception called the VMM
Communication Exception (#VC) is generated to be caught
by the guest indicating that a mapping has been tampered

Figure 1. SEV boot overview

with.3 These changes ensure that secrets cannot leak through
register state, and guests are protected from replay attacks,
data corruption, memory aliasing, and memory re-mapping
by a malicious host. Since SEV-SNP enforces memory in-
tegrity and is the latest version of SEV, all experiments in
this paper are run with SEV-SNP.

2.3 Trust Model
SEV allows the guest to remove the host from the trust do-
main by preventing writes to memory from entities outside
a VM and ensuring that reads resolve to encrypted data. We
assume that an attacker has control over the entire host soft-
ware stack, i.e., the host operating system, VMM/hypervisor,
firmware, and control software, and has physical access to the
machine. We trust AMD hardware (the PSP), the firmware
running on the PSP, and any software the guest owner pro-
vides to run in their VM, provided that it is proven to have not
been tampered with through remote attestation. Because the
AMD hardware is responsible for protecting guest memory,
we trust that data in encrypted memory cannot be leaked to
the host.

In a cloud setting, we assume that providing the host with
a plain text kernel, kernel cmdline, and initrd does not lead
to leaking confidential data because none of these compo-
nents will contain secrets, and remote attestation proves to
the guest owner that none of these components have been
tampered with. Any secrets the guest owner needs will be
provided after establishing a secure channel via successful
remote attestation.
SEV does not provide any protection against denial-of-

service (DoS) attacks; it guarantees that secrets are not read-
able outside a guest, and that encrypted guest memory can-
not be modified by the host. Architectural side channel at-
tacks, e.g., prime+probe based attacks, page access tracking,
and performance counter tracking, are out of scope. While
encrypting the code running in a guest prevents attackers
from knowing what applications are being run, encryption
alone does not prevent fingerprinting. AMD notes that future
iterations of SEV may have increased protections against
side channel attacks [1].
3The RMP check does not need to happen during a read because guest-
owned pages are encrypted.

3



2.4 Launching an SEV Guest
The steps to securely boot an SEV guest differ from the
traditional VM boot sequence in two main ways:

a) Guest code/data is encrypted to protect it from the
host.

b) A VMs initial state is measured to form a root of trust.
The SEV API [6] details a series of launch commands that
are issued by the hypervisor to the PSP during each boot se-
quence to provide the security guarantees from (a) and (b). As
shown in Figure 1, the LAUNCH_START command initializes
the SEV platform and allocates a new memory encryption
key for a guest (1). The LAUNCH_UPDATE_DATA command tells
the PSP to hash a region of guest memory (containing ini-
tial code/data) to include in the launch measurement, then
encrypt it with the new guest’s key to protect it from the
host (2). For the rest of the paper, we call this process pre-
encryption.
The hypervisor executes LAUNCH_FINISH to finalize the

launch flow which transitions the guest to a state where the
hypervisor can no longer execute LAUNCH_UPDATE_DATA (3).
This prevents the hypervisor from encrypting any additional
guest memory after an attestation report has already been
requested and verified. Pre-encrypting some portion of guest
memory is necessary for a secure boot with SEV because it
adds the guest’s initial state to the root of trust. The VMM
then enters the guest at code inside the root of trust (4). This
code first validates guest pages with pvalidate and initial-
izes page tables with the enCryption bit (C-bit) set in every
entry that corresponds to an encrypted page. The C-bit is
carried through to the encryption engine during address
translation and determines whether the data at the resolved
address will be encrypted/decrypted on its way to the CPU.
Once page tables are initialized and memory is validated, the
guest has full control over protecting memory from the host,
and it can continue to boot securely.

Once the guest runs, it requests an attestation report from
the PSP that contains the launch measurement that is signed
by a chip-unique key. Before any secrets are provided to
an SEV guest, the attestation report must be verified by the
guest owner to establish a secure channel. Attestation is
performed after the guest kernel boots via the following
steps shown in Figure 1:

a) Guest requests attestation report from PSP (5)
b) PSP places attestation report directly in encrypted

guest memory (6)
c) Guest sends attestation report to guest owner (7)
d) Guest owner validates report and sends secrets to guest

(8)
Since secrets should not be provided before attestation, the
code responsible for attestation must be plain text, and thus
vulnerable to the host. Attestation code should be placed in
encrypted guest memory and reflected in the launch mea-
surement to ensure that it is protected and was not tampered

Figure 2. Measured Direct Boot

with. Thus, we assume all attestation code enters the guest
via an initrd that is provided to the VMM as plain text and
mounted in encrypted memory.

2.5 Current State of SEV Boot
The mainstream hypervisor and guest support for booting
an SEV guest is split between QEMU and the EDKII project’s
Open Virtual Machine Firmware (OVMF)4. Under pressure
from microVM capable VMMs like Firecracker, QEMU has
recently added support for direct boot instead of emulating
bare-metal boot. With a similar motivation, support formea-
sured direct boot [36] was added to QEMU/OVMF to allow
SEV guests to bypass GRUB.
With measured direct boot, the user provides the VMM

with a plain text guest kernel, initial ramdisk (initrd), and
kernel command line. Each component is then given to the
guest which lays them out in memory and boots the kernel
directly. However, this means that the boot components are
not in guest memory until after the guest starts running, so
they would not be reflected by the launch measurement. To
prevent the host from loadingmalicious components without
the guest owner’s knowledge, the VMM and the guest must
do the following, depicted in Figure 2:

1. The VMM hashes the boot components (kernel, initrd,
and kernel command line).

2. The VMM pre-encrypts the hashes which will include
them in the final launch measurement so they can be
verified by the guest. Encrypting them also protects
them from the VMM because the VMM cannot write
to encrypted pages

3. The VMM transfers boot components to the guest
through shared (plain text) pages.

4. The guest protects components by copying them from
the shared region to an encrypted region.

5. The guest re-hashes the encrypted components and
compares against the pre-encrypted hashes.

6. If the hashes match, the guest loads the protected (en-
crypted) components.

For the rest of the paper, we call the process of copying
boot components to encrypted memory, re-hashing them,
and comparing the new hashes to the pre-encrypted hashes
boot verification. We call the unit that carries out this process
the boot verifier.
4https://github.com/tianocore/edk2

4



Figure 3. Breaking down the OVMF boot process with SEV-
SNP shows that the boot verifier is a small portion of overall
boot time.

2.6 Security Implications of Measured Direct Boot
Measured direct boot relies on a key insight: the hash of
a component can be pre-encrypted instead of the component
itself and used to check its integrity.Although the boot compo-
nents themselves are not included in the root of trust, using
measured direct boot does not compromise the integrity of
an SEV guest for two reasons that we explain below.

Secret-free Construction. Each component is generic
and open source; none are built with secrets. The kernel is
compiled from an unmodified source tree. The initrd includes
the open-source kernel module, scripts, and set of standard
command line tools needed for attestation. Keys used to
wrap secrets are generated in encrypted guest memory at
attestation time so they are not present in the plain text
initrd and protected from the host. Any secret data needed
after attestation, like the key to an encrypted disk, can be
provided over the network via the secure channel established
during attestation.

Protection from the Host. There are three ways that the
host could attempt to make the guest load compromised
components.

1. The host could give the guest malicious boot compo-
nents after the hashes of the correct components are
pre-encrypted. The boot verifier detects this when it
checks the hashes.

2. The host could pre-encrypt hashes of the malicious
components so the boot verifier would trust them. The
guest owner will detect this in the attestation report
because the launch digest will not match the expected
digest.

3. Finally, the host could load a malicious boot verifier
that does not check hashes. The guest owner also de-
tects this in the attestation report because the boot
verifier must be pre-encrypted and the launch digest
will not match the expected digest.

Figure 4. Even with the smallest possible candidates for ini-
tial boot code, pre-encryption with SEV-SNP is prohibitively
expensive.

3 MicroVM Boot is Incompatible with SEV
In this section we show that current state of SEV boot is
incompatible with microVMs due to the high cost of mea-
surement while establishing a root of trust on the critical
boot path.

3.1 Large firmware is not suited for microVMs
OVMF’s goal is to provide UEFI support for virtual machines.
Because of this, it conforms to UEFI standards and supports
features that are unnecessary when booting a microVM in-
cluding support for drivers that emulate hardware devices,
running a UEFI shell, and executing EFI programs. It is Plat-
form Initialization (PI) [43] compliant, so it supports the six
boot phases outlined by the UEFI specifications. Supporting
these boot phases results in redundant and unnecessary com-
putation since the VMM is a process running on a system
that has already undergone this bootstrap.
Figure 3 breaks down these phases during an SEV-SNP

boot and shows that OVMF’s runtime is over 3 seconds. For
reference, on our system (as shown in Section 6), booting
the standard AWS microVM configured Linux kernel with
Firecracker without SEV takes about 40ms. The main insight
here is that the only portion needed for SEV is the “Boot
Verifier” where the boot components (kernel, initrd, and
kernel command line) are checked for integrity. Furthermore,
the smallest supported build of OVMF is 1MB which is large
enough for pre-encryption to be expensive, adding an extra
256.65ms to the overall boot time of an SEV guest, which is
many times slower than the boot time of a standard microVM.
A successful SEV boot does not depend on any UEFI support,
and coupling SEV bootstrap with UEFI bootstrap clashes
with the microVM theme of eliminating bootstrap steps for
performance gains.

3.2 Direct boot is incompatible with SEV
The initial code that runs in an SEV guest must be pre-
encrypted to include it in the root of trust so the guest has
a trusted entry point. Because OVMF is incompatible with
microVMs, we next explore the possibility of bypassing the
guest firmware and adapting direct boot for SEV. In a typical
direct boot, the VMM parses the vmlinux and loads each

5



ELF segment to its location to run in guest memory. The
VMM also loads an uncompressed initrd into guest memory.
However, with SEV the initial boot code—in this case, the
kernel and initrd—must be pre-encrypted. Figure 4 shows
that pre-encryption time grows linearly with size, leading us
to choose the smallest Linux kernel configurations for our
attempt at direct boot with SEV. We chose the lupine-base
configuration from Lupine Linux [31] for our kernel as it
represents a lower bound on the size of a kernel capable of
running general-purpose applications.

Taking the typical direct boot approach using our Lupine
vmlinux (23MB), pre-encryption takes 5.65 seconds on av-
erage, which is two orders of magnitude greater than a ref-
erence non-SEV boot of the Lupine kernel which takes less
than 40ms. By reintroducing compression we can reduce the
size of the kernel/initrd in hopes of better pre-encryption
performance. However, pre-encrypting the Lupine bzImage
takes 840ms on average, and pre-encrypting the compressed
initrd (12M) still takes 2.85s, an increase over our reference
microVM boot time of two orders of magnitude. Because
pre-encryption is costly even with the smallest components, we
need a new initial boot component to minimize the size of the
root of trust.

3.3 Measured direct boot favors kernel compression
As described above, measured direct boot can alternatively
be used to pre-encrypt a hash of the kernel/initrd instead of
the components themselves. Measured direct boot is faster
than pre-encryption because the CPU handles measurement
rather than the less powerful PSP, but still costly since we
pay twice per byte: once for the copy from plain text to en-
crypted memory, and again for the second hash. Because
these operations both depend on size, minimizing kernel size
is critical to fast boot. Copying and hashing a bzImage is
cheaper than copying and hashing a vmlinux due to com-
pression. However, this reintroduces decompression to the
critical path of a microVM boot. Figure 5 shows the cost of
compression during a measured direct boot. There are two
main takeaways from Figure 5:

1. Regardless of kernel size, the most efficient way to do
measured direct boot with Linux is to use a bzImage
compressed with LZ4.

2. It is faster to leave the initrd uncompressed because
the CPIO archive already needs to be unpacked and
adding decompression adds unnecessary overhead.

We collectedmeasurements using kernel configurations from
Lupine Linux [31], the AWS configuration shipped with Fire-
cracker, and a typical Ubuntu configuration to represent
small, medium, and large kernels, respectively. Section 6 dis-
cusses kernel configuration choice in more detail. The initrd
contains only the functionality to perform remote attestation
and its size does not depend on the kernel configuration.

Figure 5. The overhead of measured direct boot steps for the
kernel and initrd shows that the most efficient way to boot is
with an LZ4 compressed kernel and an uncompressed initrd

4 SEVeriFast
Figure 6 provides an overview of SEVeriFast’s design. SEVeri-
Fast is based on the overarching principle that the amount of
data measured during boot should be minimized to achieve
fast secure boot with SEV. SEVeriFast is made up of the fol-
lowing 4 components, highlighted in Figure 6:

1. A minimal boot verifier to limit the size of the root of
trust;

2. An optimized pre-encryption component that mini-
mizes pre-encryption time for important data struc-
tures;

3. An out-of-band kernel/initrd hashing component that
reduces measurement on the critical boot path; and

4. An LZ4 kernel compression component that minimizes
time spent during measured direct boot.

SEVeriFast’s goal is to optimize the cold start performance
of SEV guests. Although warm start is an active area of re-
search [16, 17, 20, 37, 38, 44], cold start invocations make
up a significant portion of overall serverless function invo-
cations [39]. We discuss our decision to focus on cold start
and the challenges associated with warm start for SEV in
Section 7.

4.1 Minimal Boot Verifier
Our design relies on the key insight from Section 2.6 that the
root of trust should be as small as possible. The kernel and
initrd are too large to be pre-encrypted, so the optimal way
to boot an SEV guest is to add each component’s hash to the
root of trust instead and load the kernel/initrd via measured
direct boot. With this in mind, we designed a minimal boot
verifier to include in the root of trust as the initial guest code
with the sole purpose of verifying the kernel and initrd.

As discussed in Section 2, microVMs reduce boot time over
traditional VMs by removing unnecessary driver support and

6



Figure 6. SEVeriFast’s components (shown in green) produce a minimal root of trust to optimize the boot time of SEV guests

Data Structure Purpose Struct Size Code Size Pre-encrypt or Generate?
mptable CPU config 284B + 20B/CPU 4KB Pre-encrypt
cmdline Kernel args 155B N/A Pre-encrypt
boot_params System info 4KB 5KB Pre-encrypt
page tables Paging in guest 4KB 2.4KB Generate

Figure 7. We pre-encrypt the data structures the kernel
needs to boot when the code required to generate them is
larger than the structure itself.

redundant bootstrap from a BIOS or bootloader. SEVeriFast
follows this principle, and we choose to only include the
functionality required to securely load the kernel/initrd in
our boot verifier. Figure 6 shows that the boot verifier simply
initializes protected memory by setting the C-bit in all page
table entries and executing pvalidate on every page in
guest memory, then performs measured direct boot with
the process outlined in Figure 2. Because we minimize the
functionality of the boot verifier, we have a standalone binary
that is about 13KB that we include in the root of trust. In
addition to reducing the amount of trusted code in the guest,
our small boot verifier helps minimize the size of the root of
trust thus minimizing the cost of pre-encryption.

4.2 Optimized Pre-encryption
During a typical microVM boot, the VMM generates data
structures that the kernel needs and loads them into guest
memory. When the guest kernel boots, it accesses these data
structures in pages with the C-bit set so, for integrity and
compatibility with Linux, they must be encrypted.

We can choose to pre-encrypt these data structures if the
VMM already generates them, but this increases the size of
the root of trust and adds pre-encryption time. The alterna-
tive is for the boot verifier to generate the data structures
after launch in C-bit memory to implicitly encrypt them.
However, our boot verifier is designed to be small, and adding
functionality to generate data structures will increase its size
and in turn increase pre-encryption time. Because our goal is
to minimize the size of the root of trust, we pre-encrypt a data
structure only when the code that generates it is larger than
the structure itself.
Figure 7 shows the data structures the kernel needs at

boot time, the purpose of each data structure, their sizes, and

whether we pre-encrypt or generate them. We pre-encrypt
the mptable because it only spans 304 bytes for a VM con-
figured with a single CPU, plus 20 bytes for each added CPU,
while the code required to generate it is around 4k. The
boot_params span a 4k page, and the code required to gener-
ate it is about 5k so we pre-encrypt it as well. We pre-encrypt
the kernel command line for two reasons. While the com-
mand line has a maximum size of 4K, the default command
line provided by Firecracker is only 155B. The cmdline is also
passed to the VMM by the client, so it cannot be generated
by the VMM or the guest. The only other way to get the
cmdline to the guest would be to hash and verify it in the
boot verifier, but because the command line is small, avoid-
ing pre-encryption does not lead to significant performance
gains. Finally, we choose to generate page tables in the boot
verifier rather than in the VMM because the page tables span
4K in memory (1GB identity mapped with 2MB pages) and
removing the code required to generate them from our boot
verifier only saves 2.4KB.

Pre-encrypting more than just a single binary blob adds
complexity to computing the expected launch measurement,
but we remedy that by including a tool with SEVeriFast to
generate a SHA256 digest of each pre-encrypted component.
To generate the digest, the tool needs the guest kernel hash,
the initrd hash, the boot verifier, and a Firecracker VM config-
uration file. This way it can hash the command line, generate
the mptable, and boot_params, then hash them as well. The
digest can then be used to compare against the digest re-
ceived with an attestation report during remote attestation.

4.3 Out-of-band Hashing
Because the kernel and initrd are too large to be included
in the root of trust, we use measured direct boot to load
them. Measured direct boot requires the kernel and initrd
to each be hashed twice: once before pre-encryption so the
hashes are included in the root of trust, and again in the
guest to compare to the original hashes and verify that the
correct components were loaded. Hashing the kernel/initrd
in the VMM could add up to 23ms of boot time, so we hash
them off the critical boot path to save time. Providing the

7



VMM with pre-computed hashes at boot time does not com-
promise security because the hashes will be pre-encrypted
and reflected in the attestation report. We modify the VMM
to take a file containing the kernel hash and initrd hash as
extra arguments to remove redundant measurement from
the critical path.

4.4 Kernel Compression
Based on our observations from Section 2.6, measured di-
rect boot with an LZ4 compressed bzImage is the fastest
way to securely boot the Linux kernel, and a key element
of our design is the decision to move away from booting an
uncompressed vmlinux like typical microVMs. Importantly,
compression has been considered harmful with respect to mi-
croVMs because decompression is expensive. In the context
of SEV where measurement is more expensive, compression
reduces the data being measured during boot and thus the
time to establish a root of trust through measured direct boot.
Furthermore, booting a bzImage simplifies measured direct
boot compared to an optimal measured direct boot with an
uncompressed vmlinux, which we describe in more detail in
Section 5. We modify the VMM to place the kernel, now a
compressed bzImage, at a location in memory known to the
boot verifier. The boot verifier also only contains support for
loading a bzImage which helps it stay small since loading
a bzImage requires less code than parsing and loading the
uncompressed kernel ELF.

5 Implementation
We implemented support for launching SEV guests in Fire-
cracker v0.26 because it is the state of the art in terms of
microVM boot times, and provides minimal functionality for
the guest which helps minimize the complexity of attestation.
For example, Cloud Hypervisor5 boots Linux with PVH and
ACPI enabled, neither of which are needed for a microVM
boot and would add extra data structures to guest memory
that would need to be encrypted. Firecracker is open source
and implemented in Rust, and our modifications do not affect
the boot process of a non-SEV VM. The code we added to
support SEV is mostly contained in its own Rust module,
and spans just over 1100 lines of code. We also modified the
monitor to take in our boot verifier and kernel/initrd hashes
as arguments.
Our boot verifier is also implemented in Rust, based on

a fork of rust-hypervisor-firmware6. Rust hypervisor
firmware was already small, but still contained support we
did not need: a virtio block device driver, support for reading
files from FAT partitions, booting with PVH, executing EFI
programs, and PCI drivers. The virtio drivers, file system
support, PCI drivers, and support for executing EFI programs
were there because the firmware supported booting Linux

5https://github.com/cloud-hypervisor/cloud-hypervisor
6https://github.com/cloud-hypervisor/rust-hypervisor-firmware

either through GRUB, which is an EFI program, or by read-
ing the kernel from the guest file system. Since our design
relies on the VMM to put the kernel into guest memory,
we removed all of this support. The support for PVH boot
was there to provide the firmware with information about
the VM so it could generate the Linux boot_params. Since
Firecracker does not use PVH, we removed PVH support as
well. The only functionality that we retained is support for
initializing page tables and loading a bzImage. We modified
the existing page table support to check if SEV is enabled
and find the C-bit position in a page table entry by executing
two cpuid instructions, and set the C-bit in all entries. We
also added support for validating all of guest memory with
pvalidate before booting the kernel. The bzImage loader
was originally intended to load a bzImage from a file, so we
modified it to load a bzImage from a memory region instead.
We also added the sha2 Rust crate to the boot verifier to
support hashing the kernel/initrd with SHA256. We chose
this crate because it uses the x86 SHA instructions which
support hardware acceleration of the SHA family.

Uncompressed vmlinux: To compare against a bzIm-
age boot, we also implemented support for booting an un-
compressed vmlinux directly. However, loading a vmlinux
through measured direct boot is more complex from the per-
spective of the boot verifier than loading a bzImage. The
steps to load a vmlinux through measured direct boot are as
follows.

1. The VMM copies the vmlinux into guest memory.
2. The boot verifier copies the plain text vmlinux to an

encrypted region.
3. The boot verifier parses the vmlinux and copies each

ELF segment to its location to run.

Step 3 is an extra copy of the kernel that does not happen
when loading a bzImage, and to give a vmlinux the best
chance against a bzImage we implemented a protocol to load
a vmlinux that avoids this copy.

Specifically, we implemented a version of QEMU’s fw_cfg
device which allows the boot verifier to load the vmlinux
directly from the host file system into guest memory. It does
this by parsing the kernel ELF in the VMM rather than in
the guest, and copying the ELF header, the program headers,
and the loadable segments into guest memory, rather than
the entire ELF. This way, the new steps for loading a vmlinux
through measured direct boot are:

1. The VMM copies the ELF header into guest memory.
2. The boot verifier copies the ELF header to encrypted

memory and hashes it.
3. The VMM copies the program headers into guest mem-

ory.
4. The boot verifier copies the program headers to en-

crypted memory and hashes them.
8



kernel config vmlinux size bzImage size
Lupine 23M 3.3M
AWS 43M 7.1M
Ubuntu 61M 15M

Figure 8. Guest kernels used in boot time experiments

5. The VMM copies the loadable segments into guest
memory.

6. The boot verifier copies the loadable segments towhere
they should be loaded in encryptedmemory and hashes
them.

Because the constituent parts of the kernel ELF are copied
separately into guest memory rather than the full vmlinux,
they require three separate hashes. However, because the
loadable segments can be copied directly from plain text
memory to the (encrypted) location that they will run, we
avoid the extra copy of the full vmlinux.

6 Evaluation
SEVeriFast is designed to allowmicroVMs to benefit from the
confidentiality offered by SEV by minimizing the additional
cost associated with cold boot caused by SEV. Thus, when
evaluating SEVeriFast, we answer the following questions:

• Does SEVeriFast minimize SEV-related bootstrap?
• How do SEVeriFast and non-SEV microVM boot com-
pare?

• How does SEVeriFast affect microVM memory usage?
• How do concurrent SEVeriFast cold boots perform?

6.1 Experimental Setup
This section describes the hardware used in our experiments,
the Linux version and configurations used, our modifications
to the Firecracker VMM, and our testing methodology.

Environment Setup: All experiments were run on a ma-
chine with an AMD EPYC 7313P @ 3.0GHz and 128 GB of
DDR4 memory @ 3200 MT/s. This machine was running a
development 6.1.0-rc4 Linux kernel with the AMD patches to
support launching SEV-SNP guests. We additionally patched
this version of Linux to avoid an expensive and unnecessary
worker thread intended as an iTLB multi-hit mitigation on
Intel CPUs7 that is not needed on AMD CPUs.

Guest Kernel Configurations: Figure 8 summarizes the
guest kernel configurations we used in our experiments.
Each kernel was compiled from a Linux 6.4 source tree with
patches to support booting with SEV-SNP through the non-
EFI code path. The patches include executing pvalidate
on memory regions that are touched in the non-EFI code

7https://www.kernel.org/doc/html/latest/admin-guide/hw-
vuln/multihit.html

path but are not touched by the EFI code path in the bz-
Image bootloader. This was necessary so that once the real
kernel boots the memory it expects to be valid/invalid is
correct. We chose representative small, medium, and large
kernel configurations to highlight the best, typical, and worst
cases when booting under SEVeriFast. We include the vm-
linux version of each kernel as a comparison against the
bzImage to show that our design choice to always use com-
pressed kernels for faster boot times holds regardless of
kernel configuration. Each bzImage is compressed with LZ4
in accordance with our design. Each kernel is compiled with
SEV support (CONFIG_AMD_MEM_ENCRYPT), support for ob-
taining attestation reports (CONFIG_SEV_GUEST), and sup-
port for the necessary virtio drivers (CONFIG_VIRTIO_BLK,
CONFIG_VIRTIO_NET) needed to boot in Firecracker. For the
sake of equivalent comparison, we use the kernels compiled
with SEV support when booting non-SEV guests as well.

The Lupine configuration is a version of the lupine-base
configuration from Lupine Linux[31]. It is compiled from
the same Linux tree as the other kernels and does not use
the kernel patches used in the Lupine paper. Because the
goal of Lupine was to create Linux unikernels, our Lupine
kernel represents the smallest single purpose Linux kernel
that boots in Firecracker. We use the base Lupine config
which is configured without networking support, so we do
not include attestation time in our results for the Lupine
kernel. If we were to enable networking, the Lupine kernel
and the AWS kernel become similar in size, so we include
it only as a lower bound to illustrate how SEVeriFast scales
with respect to kernel size. The AWS configuration is the mi-
croVM configuration provided by Firecracker and represents
a kernel purpose built to run in Firecracker with minimal
driver support that can run general purpose workloads. Our
last configuration, Ubuntu, is based on the Linux 5.15.0-53-
generic configuration that came with our distribution of
Ubuntu. Each configuration was updated to the 6.4 kernel
by running make olddefconfig in the source directory.

Attestation: To emulate remote attestation, we run a local
nginx server that receives and validates an attestation report.
Upon successful validation, the server wraps a secret with
the guest’s public key and sends it to the guest. We use open
source scripts provided by AMD8 in our attestation server.
The cost of attestation on our test machine is about 200ms
for all VM configurations. In practice, this cost could be
amortized by combining attestation with user-level protocols
for database fetches when a serverless function needs to
access confidential data. Because attestation would not be
necessary until the guest’s function runs, we do not consider
attestation part of boot, but we include it to show the end-
to-end cost of establishing trust with SEV.

8https://github.com/AMDESE/sev-guest
9



Figure 9. Cumulative distribution of boot times start-
ing SEV-SNP VMs in series with SEVeriFast compared to
QEMU/OVMF, measured from the time the VMM is exe-
cuted until remote attestation is completed

Firecracker Versions: SEVeriFast includes modifications
to Firecracker v0.26 that add support for launching SEV, SEV-
ES, and SEV-SNP guests with our design choices outlined
in Section 4. Our modifications do not make any changes to
the non-SEV boot path, other than slightly increasing the
size of the Firecracker executable, so we use the same binary
to compare SEV boot times to non-SEV boot times. Data
labeled ‘Firecracker’ uses the non-SEV boot path, while data
labeled ‘SEVeriFast’ takes the SEV boot path.

Testing Methodology: To measure overall boot times and
the constituent parts of a VM boot we needed to extract
timing information from a running guest. To do this in Fire-
cracker, we modified the VMM to attach a debug port device
before booting the VM, inspired by the same technique in
Cloud Hypervisor.9 The debug port device listens on port
0x80 for writes from the guest, and records them with times-
tamps in the Firecracker logs. This way, the boot verifier
and guest kernel can simply execute the outb instruction at
important intervals and timing information will be recorded
automatically. We take a similar approach to measuring boot
times with QEMU/OVMF with a combination of QEMU log-
ging and outb instructions in OVMF. With SEV-ES/SNP
guests, executing outb generates a VMM communication
exception (#VC) because handling an I/O write requires the
guest to share register state with the VMM. There are points
during early boot where #VC handlers have not been in-
stalled yet, so as a workaround SEV-ES/SNP guests leverage
writing to the GHCB MSR which is always intercepted by
the VMM. We modified Firecracker and QEMU to interpret
magic values written to the GHCB MSR as timing events
and log them. We use the perf utility to record timestamps

9https://github.com/cloud-hypervisor/cloud-
hypervisor/blob/main/devices/src/legacy/debug_port.rs

Pre-encryption Firmware/Boot Verification
QEMU Ubuntu 287.80ms 3239.71ms
QEMU AWS 287.76ms 3181.40ms
QEMU Lupine 287.91ms 3168.53ms
SEVeriFast Ubuntu 8.19ms 32.96ms
SEVeriFast AWS 8.22ms 24.73ms
SEVeriFast Lupine 8.07ms 20.36ms

Figure 10. Boot time breakdown of SEVeriFast vs. QEMU.
SEVeriFast reduces average pre-encryption time by 97% and
average firmware runtime by 98%.

of debug port writes from OVMF, and the QEMU logs to
capture events that occur inside the VMM.
We consider boot time to be the time between execut-

ing the VMM process and executing init in the guest. We
then break down the overall boot time into four parts: Fire-
cracker/QEMU, the time spent in the respective VMM before
entering the guest, Boot Verification, the time spent running
the boot verifier in the guest, Bootstrap Loader, the time the
bzImage bootstrap loader spends decompressing and loading
the vmlinux, and Linux Boot, the time between executing
the guest kernel and running init. We take the average of
each constituent part over 100 runs when calculating boot
time, and include error bars to show one standard deviation
of overall boot time. We boot each kernel five times before
collecting data to allow the kernel file to be warm in the
buffer cache, then run all subsequent boots sequentially. We
assume that a production deployment of Firecracker will
use the same kernel per VM instance, and will likely have it
resident in memory or cached in some form to save I/O time.
Each VM is configured with 1 vCPU and 256MB of memory.
All experiments are run with transparent huge pages enabled.
In our testing, we found that enabling huge pages brings the
time to pvalidate guest memory down from over 60ms to a
negligible <1ms on average. Enabling huge pages decreases
pre-encryption time with base SEV and SEV-ES, but had no
effect with SEV-SNP.

6.2 Boot Times
QEMU. Figure 9 compares the overall boot performance

between SEVeriFast and QEMU including attestation time to
show that our design accomplishes its goal of greatly reduc-
ing boot time over the state-of-the-art. SEVeriFast reduces
average boot times by 93.8% for the Lupine kernel, 88.5% for
the AWS kernel, and 86.1% for the Ubuntu kernel. Figure 10
shows that we save significant time in both pre-encryption
and the guest firmware runtime. These savings come from
the fact that our standalone boot verifier is small (about 13KB)
compared to OVMF. As discussed in Section 4, microVMs do
not use a guest firmware or BIOS, and we take advantage
of that by only including the necessary functionality in our
boot verifier.

10



Figure 11. Breakdown of boot times between Stock Fire-
cracker (Stock FC), SEVeriFast with a compressed kernel
(SEVeriFast bzImage), and SEVeriFast booting an uncom-
pressed kernel (SEVeriFast vmlinux). Experiments with an
uncompressed kernel use our optimized ELF loader from
Section 5.

Stock Firecracker. Because the SEV boot process breaks
the assumption that directly booting an uncompressed ker-
nel is the most efficient way to boot, SEVeriFast adds un-
avoidable overhead compared to a cold boot of a non-SEV
microVM. Similarly, there is extra cost in the VMM when
launching an SEV guest because KVM needs to initialize the
RMP entries mapping guest memory before boot. Figure 11
shows the overhead that SEVeriFast adds to a non-SEV boot
in Firecracker, and the overhead of booting a vmlinux with
our design. We do not include attestation time in our com-
parison to stock Firecracker because our modifications to
Firecracker do not affect attestation.

The boot time of the AWS kernel with SEVeriFast is about
4x greater than that of stock Firecracker. The two greatest
sources of overhead are Linux Boot and Firecracker. Linux
Boot takes about 2.3x longer than booting Linux without SEV.
We believe this extra overhead comes from the cost of hy-
percalls and memory accesses in SEV-SNP. When the guest
does a world-switch, the #VC handler runs and the guest
decides which register state to expose to the host. Similarly,
on every write to guest memory an RMP check occurs to
ensure the access is coming from the guest. SEVeriFast does
not make any changes to the Linux boot process. In addition
to pre-encryption, the overhead added to the time spent in
Firecracker comes from the other SEV launch commands,
and extra communication with KVM to register pages in
guest memory that may contain encrypted data. Encrypted
pages with identical plain text contents at different physical
locations will have different ciphertexts under SEV, so KVM
pins guest memory pages during boot, incurring more over-
head. The remaining overhead comes from three sources:
pre-encryption, boot verification, and the bzImage bootstrap

Figure 12. Average boot time of concurrent SEV guests from
1 to 50 concurrent instances.

loader. Pre-encryption adds small constant overhead (<9ms)
because the boot verifier and boot data structures make up
the components that are pre-encrypted which do not depend
on the size of the kernel.

A key element of our design is to boot a compressed ker-
nel because the time saved hashing it in software outweighs
the extra decompression cost. As shown in Section 2.6 hash-
ing/copying an uncompressed kernel can take twice as long
compared to a compressed kernel. This cost is amortized in
these results by the higher Linux Boot and Firecracker costs.
If these costs are further optimized, the choice to boot an
uncompressed kernel is increasingly important. Moreover,
our optimized ELF loader described in Section 5 reduces over-
head compared to the naive approach which would show a
more significant difference in boot times.

Overall, SEVeriFast provides SEV support to microVMs at
speeds that are more comparable to typical microVM boot
times than the current method of booting SEV guests in
QEMU. The security benefits of SEV do come at a cost, but
our design minimizes this cost to preserve the low latency
execution of serverless functions.

Concurrent VMs. One of the attractive aspects of mi-
croVMs is that their low memory footprints and boot times
allow for a high degree of concurrency. Thus, concurrent
microVM launch performance with SEVeriFast is an impor-
tant metric to consider. Figure 12 shows that unfortunately,
as the number of concurrent SEV guest launches increases,
the average boot time of each VM increases linearly to the
point that at just 50 concurrent guests average boot time
is around 1800ms. However, if we do the same experiment
without SEV, boot times remain almost constant. This is true
for both our design and QEMU/OVMF, so we do not believe
this is a fault in our design. Rather, we believe these results
uncover a fundamental bottleneck in the SEV hardware.
We suspect that this bottleneck comes from the fact that

the PSP is a single core, and all launch commands for every
new SEV guest must go through it. This essentially serializes
the boot process until LAUNCH_FINISH is called in each guest
each VM is competing for the PSP during launch. By virtue of

11



our design minimizing pre-encryption times, concurrent VM
launches with SEVeriFast significantly outperform QEMU,
as they remain below the boot time of a single SEV VM with
QEMU even at 50 concurrent guests. However, since average
startup time increases linearly with a slope equal to the total
time it takes to execute the SEV launch commands, boot
times remain expensive for serverless.

Because only long-running SEV guests have been offered
by cloud providers where boot time is not a concern, the PSP
bottleneck has not been exacerbated like it is in the context
of microVMs. We believe that the PSP bottleneck must be
solved for SEV to be viable for a serverless use case, and plan
to address it in future work. The key challenge here is that
attestation must be rooted by the PSP to guarantee integrity.
A possible near term approach could be to lessen the burden
on the PSP by allowing multiple VMs to share encryption
keys, which weakens the trust model, but is also relevant
for warm boot, and discussed more in the context of related
work (Section 8).

6.3 Memory Footprint
Since it is important for microVMs tomaintain small memory
footprints, we consider the memory usage of SEV microVMs.
First, our modifications to Firecracker only increase the bi-
nary size by about 50K, for a total size of about 4.2MB. We
then measured memory usage of a running VM with the
same technique used in Firecracker [7], running pmap on a
running instance and subtracting the Firecracker executable
size plus the size of guest memory. SEV microVMs only add
about 16K to the total memory usage over a non-SEV guest
meaning the number of guests that can run concurrently
with our design is roughly the same as the number of stock
Firecracker VMs that can run on one machine.

7 Discussion
We discuss the challenges associated with warm start for
confidential VMs, and SEVeriFast’s application to other TEEs.

7.1 Cold vs. Warm Start
We acknowledge that adding SEVeriFast to Firecracker in-
creases boot times over non-confidential VMs, but we hope
that SEVeriFast’s contributions will be used as a basis to
investigate warm start. Even with a warm start solution for
SEV, SEVeriFast’s cold start optimizations are valuable. Prior
work shows that cold starts make up a significant portion of
total invocations and remain expensive [29, 39]. An obvious
approach to warm start is to use keep-alive windows for
SEV VMs and allow previously attested state to be reused
by the same guest owner. While this approach would be
functionally correct, it would result in high memory con-
sumption because pages cannot be deduplicated as they are
in other systems [17, 38]. Deduplication is challenging with

SEV because pages with identical contents at different phys-
ical addresses will have different ciphertext, and if the host
changes a guest page mapping the RMP check will fail on
the next access to that page. Similarly, loading snapshot
images is a challenge in a confidential context because exist-
ing solutions rely on pre-fetching [44], lazy loading [20], or
sharing deduplicated snapshot blocks [16]. All of these solu-
tions would require communication between the host and
the guest during launch and/or runtime to verify pages as
they are lazily mapped in to the guest. Verifying these pages
would also require the guest to know its own snapshotted
state which may not always be feasible.
Plug-in-enclaves [32] exploit the fact that previously at-

tested state like shared libraries can be securely re-used and
mapped into a new enclave to improve initialization time of
serverless applications. Their design allows previously at-
tested state to be mapped into new serverless instances and
shared to eliminate redundant application state for serverless
enclaves. Plug-in-enclaves use Intel SGX [26] and require
hardware modifications to allow inter-enclave sharing. Shar-
ing previously attested state is a promising avenue toward
warm start for SEV guests, and understanding the associated
challenges requires future work.
There is significant work to be done toward warm start

for confidential microVMs, and we see optimizing cold start
as the first step toward a complete confidential serverless
system.

7.2 Generalization to other TEEs
SGX. SEVeriFast’s design principle tominimize the amount

of data to be hashed by the hardware implicitly relies on the
fact that SEV does not require every page of guest memory to
be measured during boot. SGX 2 [46] allows enclaves to add
pages after enclave creation, but each page must be explic-
itly measured when added to an enclave. SEVeriFast relies
on the fact that an SEV guest can simply copy boot compo-
nents from plain text to encrypted pages without needing
to hash pages in hardware. Additionally, SGX has a limited
amount of memory reserved for enclave pages, while SEV
has no limit on encrypted pages. Therefore SEVeriFast is not
trivially applicable to SGX.

TDX. While TDX is built on top of SGX, the launch pro-
cess for TDX VMs is similar to that of SEV [3]. TDX and
SEV both rely on a launch measurement to establish trust
with selective measurement of initial pages. We have not
yet had the opportunity to explore the costs and trade-offs
associated with TDX but because the launch processes for
SEV and TDX are quite similar we believe that SEVeriFast’s
design principles could be applied to TDX as well.

12



8 Related Work
We discuss other efforts to combine TEEs with serverless and
work that improves the performance of applications running
in TEEs.

Trusted Serverless. Feng et al. design a system for scal-
able enclave memory protection based on the open source
RISC-V PENGLAI enclave [4] that meets the demands of
serverless [21]. Most notably for our design, they identify
that measurement calculation (i.e., pre-encryption) is the
major cost in enclave initialization. They propose shadow
enclaves that are pre-warmed and forked to create subse-
quent enclaves with the insight that previously attested state
can be used to bypass the cost of measurement during boot.
Shadow enclaves present possible design considerations in
approaches to warm boot and addressing the PSP bottleneck
from Section 6. Challenges include memory sharing in a TEE
with SEV and the implications of sharing keys with multiple
VMs.

Gu et al. leverage SGX and Intel Memory Protection Keys
(MPK) to provide isolation between multiple distrusted ap-
plications running inside a single SGX enclave, called light-
enclaves, to reduce the TCB within an enclave [23]. They
evaluate the execution time of serverless functions within
light-enclaves and find similar performance between light-
enclaves and launching functions in pre-warmed enclaves
with lower resource consumption. They note that light-enclaves
allow 16 isolated serverless functions to run in one hardware
enclave rather than one function per hardware enclave with-
out MPK, but because SGX is still limited by fixed processor
reserved memory and 16 functions per-enclave, SEV remains
more flexible for a serverless use case.

Fast Startup for Serverless. REAP [44] makes the obser-
vation that multiple invocations of the same function access
the same working set of pages, and pre-fetching the working
set from disk can greatly reduce boot times of VMs started
from snapshots. Catalyzer [20] uses copy-on-write to reuse
state from an already running VM to further reduce startup
times of similar function invocations. It also introduces a new
OS primitive, sandbox-fork, to fork new serverless functions
from a warm instance. FAASM [40] uses shared memory be-
tween functions to reduce initialization times. While sharing
memory and reusing state from warm VMs could be applied
to SEV guests, it would require multiple VMs to share the
same memory encryption key which complicates the trust
model.
In-monitor KASLR [24] makes the observation that the

security benefits of KASLR can be enjoyed by serverless
applications with low overhead by giving the VMM control
over randomization. Like other assumptions about direct
boot, SEVeriFast breaks in-monitor KASLR. In general, TEEs
reduce the benefits of moving computation from the guest
to the host.

Performance of TEE Protected Applications. Efforts
to improve enclave performance have mainly focused on
SGX [12, 13, 32, 41]. SCONE [12] provides a library to se-
cure Docker containers in SGX enclaves to run unmodified
Linux applications with low overhead. Graphene-SGX [41]
is a fully-featured library OS built to run unmodified user
applications in SGX enclaves with minimal overhead.

Similar to our boot verifier, td-shim10 provides a thin layer
between the VMM and the guest workload to initialize an
enclave for Intel TDX [3]. Td-shim shares motivation with
our work insofar as td-shim is built to load a payload with
no firmware dependencies, which one could choose to be a
microVM-ready Linux kernel, to minimize overall boot time.
However, td-shim measures its payload with the TDX equiv-
alent of pre-encryption which our work has shown to have
a large impact on boot time with SEV. Td-shim also supports
loading multiple payload types and more functionality, like
a heap allocator, building and installing ACPI tables, and an
event logger to name a few. There has also been talk about
adding support for SEV to td-shim11. However, adding gen-
erality and quality-of-life features like an allocator leads to
a larger binary size and longer pre-encryption times, nega-
tively affecting boot time.

9 Conclusion
Serverless platforms offer low latency, on-demand compu-
tation in the cloud but lack support for the confidentiality
of TEEs offered by IaaS platforms today. We have identified
that the state-of-the-art method of booting SEV guests is
incompatible with the low latency expectations of serverless
platforms, and designed SEVeriFast to provide efficient cold
boot for SEV guests. With SEVeriFast we have demonstrated
that optimizing the SEV boot process yields performance
comparable to state-of-the-art microVMs. Furthermore, we
identified a key bottleneck in the SEV hardware and the chal-
lenges related to mitigating it as future work. We believe the
SEV-compatible fast cold boot achieved by SEVeriFast will
provide an efficient and secure foundation for next genera-
tion secure serverless platforms.

References
[1] AMD SEV-SNP: Strengthening VM Isolation with Integrity Protection

and More. https://www.amd.com/system/files/TechDocs/SEV-SNP-
strengthening-vm-isolation-with-integrity-protection-and-more.pdf.
(Accessed on 2022-15-11).

[2] Docker. http://docs.docker.io/en/latest/.
[3] Intel® Trust Domain extensions. https://www.intel.com/content/dam/

develop/external/us/en/documents/tdx-whitepaper-v4.pdf.
[4] Penglai enclave. https://github.com/Penglai-Enclave.
[5] Protecting VM Register State with SEV-ES.

https://www.amd.com/content/dam/amd/en/documents/epyc-
business-docs/white-papers/Protecting-VM-Register-State-with-
SEV-ES.pdf. (Accessed on 2022-15-11).

10https://github.com/confidential-containers/td-shim/
11https://github.com/confidential-containers/td-shim/issues/135

13

http://docs.docker.io/en/latest/
https://www.intel.com/content/dam/develop/external/us/en/documents/tdx-whitepaper-v4.pdf
https://www.intel.com/content/dam/develop/external/us/en/documents/tdx-whitepaper-v4.pdf
https://github.com/Penglai-Enclave


[6] SEV Secure Nested Paging Firmware ABI Specification. https://www.
amd.com/system/files/TechDocs/56860.pdf. (Accessed on 2022-15-11).

[7] Alexandru Agache, Marc Brooker, Alexandra Iordache, Anthony
Liguori, Rolf Neugebauer, Phil Piwonka, and Diana-Maria Popa. Fire-
cracker: Lightweight virtualization for serverless applications. In
USENIX Symposium on Networked Systems Design and Implementation,
Santa Clara, CA, February 2020.

[8] Istemi Ekin Akkus, Ruichuan Chen, Ivica Rimac, Manuel Stein, Klaus
Satzke, Andre Beck, Paarijaat Aditya, and Volker Hilt. SAND: Towards
High-Performance Serverless Computing. In 2018 USENIX Annual
Technical Conference (USENIX ATC 18), Boston, MA, July 2018. USENIX
Association.

[9] AmazonWeb Services. Aws lambda. https://aws.amazon.com/lambda/.
Accessed on 2022-12-05.

[10] AdvancedMicro Devices (AMD). AMD secure encrypted virtualization
(SEV). https://developer.amd.com/sev/, Dec 2022.

[11] Lixiang Ao, George Porter, and Geoffrey M. Voelker. FaaSnap: FaaS
Made Fast Using Snapshot-Based VMs. In Proceedings of the Seven-
teenth European Conference on Computer Systems, EuroSys ’22, page
730–746, New York, NY, USA, 2022. Association for Computing Ma-
chinery.

[12] Sergei Arnautov, Bohdan Trach, Franz Gregor, Thomas Knauth, Andre
Martin, Christian Priebe, Joshua Lind, Divya Muthukumaran, Dan
O’Keeffe, Mark L. Stillwell, David Goltzsche, David Eyers, Rüdiger
Kapitza, Peter Pietzuch, and Christof Fetzer. SCONE: Secure Linux
Containers with Intel SGX. In Proceedings of the 12th USENIX Confer-
ence on Operating Systems Design and Implementation, OSDI’16, page
689–703, USA, 2016. USENIX Association.

[13] Andrew Baumann, Marcus Peinado, and Galen Hunt. Shielding Appli-
cations from an Untrusted Cloud with Haven. In Proceedings of the 11th
USENIX Conference on Operating Systems Design and Implementation,
OSDI’14, page 267–283, USA, 2014. USENIX Association.

[14] Stefan Brenner, Colin Wulf, David Goltzsche, Nico Weichbrodt,
Matthias Lorenz, Christof Fetzer, Peter Pietzuch, and Rüdiger Kapitza.
SecureKeeper: Confidential ZooKeeper Using Intel SGX. In Proceedings
of the 17th International Middleware Conference, Middleware ’16, New
York, NY, USA, 2016. Association for Computing Machinery.

[15] Marc Brooker, Mike Danilov, Chris Greenwood, and Phil Piwonka.
On-demand container loading in AWS lambda. In 2023 USENIX Annual
Technical Conference (USENIX ATC 23), pages 315–328, Boston, MA,
July 2023. USENIX Association.

[16] Marc Brooker, Mike Danilov, Chris Greenwood, and Phil Piwonka. On-
demand Container Loading in AWS Lambda. In 2023 USENIX Annual
Technical Conference (USENIX ATC 23), pages 315–328, Boston, MA,
July 2023. USENIX Association.

[17] James Cadden, Thomas Unger, Yara Awad, Han Dong, Orran Krieger,
and Jonathan Appavoo. SEUSS: skip redundant paths to make server-
less fast. In Proceedings of the Fifteenth European Conference on Com-
puter Systems, EuroSys’20, pages 1–15, New York, NY, USA, 2020.
Association for Computing Machinery.

[18] Linux Containers. https://linuxcontainers.org/.
[19] Ankur Dave, Chester Leung, Raluca Ada Popa, Joseph E. Gonzalez,

and Ion Stoica. Oblivious Coopetitive Analytics Using Hardware
Enclaves. In Proceedings of the Fifteenth European Conference on Com-
puter Systems, EuroSys ’20, New York, NY, USA, 2020. Association for
Computing Machinery.

[20] Dong Du, Tianyi Yu, Yubin Xia, Binyu Zang, Guanglu Yan, Chenggang
Qin, Qixuan Wu, and Haibo Chen. Catalyzer: Sub-Millisecond Startup
for Serverless Computing with Initialization-Less Booting. ASPLOS
’20, page 467–481, 2020.

[21] Erhu Feng, Xu Lu, Dong Du, Bicheng Yang, and Xueqiang Jiang. Scal-
able Memory Protection in the PENGLAI Enclave. In 15th USENIX
Symposium on Operating Systems Design and Implementation (OSDI),
pages 275–294. USENIX Association, July 2021.

[22] Apache Software Foundation. Apache openwhisk: Open source server-
less cloud platform. http://openwhisk.apache.org/. Accessed on 2021-
01-04.

[23] Jinyu Gu, Bojun Zhu, Mingyu Li, Wentai Li, Yubin Xia, and Haibo
Chen. A Hardware-Software Co-design for Efficient Intra-Enclave
Isolation. In 31st USENIX Security Symposium (USENIX Security 22),
pages 3129–3145, Boston, MA, August 2022. USENIX Association.

[24] Benjamin Holmes, Jason Waterman, and Dan Williams. KASLR in
the Age of MicroVMs. In Proceedings of the Seventeenth European
Conference on Computer Systems, 2022.

[25] The International Business Machines Corporation (IBM). IBM Cloud
Functions. https://www.ibm.com/cloud/functions. Accessed on 2021-
01-04.

[26] Intel. Intel® Software Guard extensions (Intel® SGX).
https://www.intel.com/content/www/us/en/developer/videos/intel-
software-guard-extensions-sgx.html?wapkw=intel+sgx.

[27] Intel Cloud Hypervisor. https://www.cloudhypervisor.org/. (Accessed
on 2023-01-10).

[28] Intel NEMU: Modern Hypervisor for the Cloud. https://github.com/
intel/nemu.

[29] Artjom Joosen, Ahmen Hassan, Martin Asenov, Rajkarn Singh, Luke
Darlow, Jianfeng Wang, and Adam Barker. How Does It Function?
Characterizing Long-term Trends in Production Serverless Work-
loads. In Proceedings of the 2023 ACM Symposium on Cloud Computing,
SoCC’23, New York, NY, USA, 2023. Association for Computing Ma-
chinery.

[30] Kata Containers: The speed of containers, the security of VMs. https:
//katacontainers.io/. Accessed on 2022-01-04.

[31] Hsuan-Chi Kuo, Dan Williams, Ricardo Koller, and Sibin Mohan. A
Linux in Unikernel Clothing. In Proceedings of the Fifteenth European
Conference on Computer Systems, Heraklion, Greece, April 2020.

[32] Mingyu Li, Yubin Xia, and Haibo Chen. Confidential Serverless Made
Efficient with Plug-In Enclaves. In 2021 ACM/IEEE 48th Annual Inter-
national Symposium on Computer Architecture (ISCA), pages 306–318,
2021.

[33] Filipe Manco, Costin Lupu, Florian Schmidt, Jose Mendes, Simon Kuen-
zer, Sumit Sati, Kenichi Yasukata, Costin Raiciu, and Felipe Huici. My
VM is Lighter (and Safer) than your Container. In The 26th ACM
Symposium on Operating Systems Principles, Shanghai, China, October
2017.

[34] Microsoft. Azure Functions Serverless Compute. https://azure.
microsoft.com/en-us/services/functions/. Accessed on 2021-01-04.

[35] Ming Mao and Marty Humphrey. A Performance Study on the VM
Startup Time in the Cloud. In 2012 IEEE Fifth International Conference
on Cloud Computing, pages 423–430, 2012.

[36] Dov Murik and Hubertus Franke. Securing
Linux VM boot with AMD SEV measurement.
https://kvmforum2021.sched.com/event/ke4h/securing-linux-
vm-boot-with-amd-sev-measurement-dov-murik-hubertus-franke-
ibm-research.

[37] Edward Oakes, Leon Yang, Dennis Zhou, Kevin Houck, Tyler Harter,
Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. SOCK:
Rapid Task Provisioning with Serverless-Optimized Containers. In
Proceedings of the 2018 USENIX Conference on Usenix Annual Tech-
nical Conference, USENIX ATC ’18, page 57–69, USA, 2018. USENIX
Association.

[38] Divyanshu Saxena, Tao Ji, Arjun Singhvi, Junaid Khalid, and Aditya
Akella. Memory deduplication for serverless computing with Medes.
In Proceedings of the Seventeenth European Conference on Computer
Systems, EuroSys’22, pages 714–729, New York, NY, USA, 2022. Asso-
ciation for Computing Machinery.

[39] Mohammad Shahrad, Rodrigo Fonseca, Í nigo Goiri, Gohar Chaudhry,
Paul Batum, Jason Cooke, Eduardo Laureano, Colby Tresness, Mark

14

https://www.amd.com/system/files/TechDocs/56860.pdf
https://www.amd.com/system/files/TechDocs/56860.pdf
https://aws.amazon.com/lambda/
https://developer.amd.com/sev/
https://linuxcontainers.org/
http://openwhisk.apache.org/
https://www.ibm.com/cloud/functions
https://www.intel.com/content/www/us/en/developer/videos/intel-software-guard-extensions-sgx.html?wapkw=intel+sgx
https://www.intel.com/content/www/us/en/developer/videos/intel-software-guard-extensions-sgx.html?wapkw=intel+sgx
https://www.cloudhypervisor.org/
https://github.com/intel/nemu
https://github.com/intel/nemu
https://katacontainers.io/
https://katacontainers.io/
https://azure.microsoft.com/en-us/services/functions/
https://azure.microsoft.com/en-us/services/functions/


Russinovich, and Ricardo Bianchini. Serverless in the Wild: Charac-
terizing and Optimizing the Serverless Workload at a Large Cloud
Provider. In Proceedings of the 2020 USENIX Conference on Usenix
Annual Technical Conference, USENIX ATC’20, USA, 2020. USENIX
Association.

[40] Simon Shillaker and Peter Pietzuch. FAASM: Lightweight Isolation
for Efficient Stateful Serverless Computing. In Proceedings of the 2020
USENIX Conference on Usenix Annual Technical Conference, USENIX
ATC’20, USA, 2020. USENIX Association.

[41] Chia-Che Tsai, Donald E. Porter, andMona Vij. Graphene-SGX: A Prac-
tical Library OS for Unmodified Applications on SGX. In Proceedings
of the 2017 USENIX Conference on Usenix Annual Technical Conference,
USENIX ATC ’17, page 645–658, USA, 2017. USENIX Association.

[42] Chia-Che Tsai, Jeongseok Son, Bhushan Jain, JohnMcAvey, Raluca Ada
Popa, and Donald E. Porter. Civet: An Efficient Java Partitioning
Framework for Hardware Enclaves. In Proceedings of the 29th USENIX
Conference on Security Symposium, SEC’20, USA, 2020. USENIX Asso-
ciation.

[43] Unified Extensible Firmware Interface. https://uefi.org/sites/default/
files/resources/PI_Spec_1_6.pdf.

[44] Dmitrii Ustiugov, Plamen Petrov, Marios Kogias, Edouard Bugnion, and
Boris Grot. Benchmarking, Analysis, and Optimization of Serverless

Function Snapshots. In Proceedings of the 26th ACM International
Conference on Architectural Support for Programming Languages and
Operating Systems, ASPLOS ’21, page 559–572, New York, NY, USA,
2021. Association for Computing Machinery.

[45] Liang Wang, Mengyuan Li, Yinqian Zhang, Thomas Ristenpart, and
Michael Swift. Peeking behind the Curtains of Serverless Platforms.
In Proceedings of the 2018 USENIX Conference on Usenix Annual Techni-
cal Conference, USENIX ATC ’18, page 133–145, USA, 2018. USENIX
Association.

[46] Bin (Cedric) Xing, Mark Shanahan, and Rebekah Leslie-Hurd. Intel®
Software Guard Extensions (Intel® SGX) Software Support for Dy-
namic Memory Allocation inside an Enclave. In Proceedings of the
5th International Workshop on Hardware and Architectural Support for
Security and Privacy (HASP’16). Association for Computing Machinery,
2016.

[47] Yanqi Zhang, Íñigo Goiri, Gohar Irfan Chaudhry, Rodrigo Fonseca,
Sameh Elnikety, Christina Delimitrou, and Ricardo Bianchini. Faster
and cheaper serverless computing on harvested resources. In Pro-
ceedings of the ACM SIGOPS 28th Symposium on Operating Systems
Principles, SOSP ’21, page 724–739, New York, NY, USA, 2021. Associa-
tion for Computing Machinery.

15

https://uefi.org/sites/default/files/resources/PI_Spec_1_6.pdf
https://uefi.org/sites/default/files/resources/PI_Spec_1_6.pdf

	Abstract
	1 Introduction
	2 The Boot Process
	2.1 MicroVMs
	2.2 Secure Encrypted Virtualization (SEV)
	2.3 Trust Model
	2.4 Launching an SEV Guest
	2.5 Current State of SEV Boot
	2.6 Security Implications of Measured Direct Boot

	3 MicroVM Boot is Incompatible with SEV
	3.1 Large firmware is not suited for microVMs
	3.2 Direct boot is incompatible with SEV
	3.3 Measured direct boot favors kernel compression

	4 SEVeriFast
	4.1 Minimal Boot Verifier
	4.2 Optimized Pre-encryption
	4.3 Out-of-band Hashing
	4.4 Kernel Compression

	5 Implementation
	6 Evaluation
	6.1 Experimental Setup
	6.2 Boot Times
	6.3 Memory Footprint

	7 Discussion
	7.1 Cold vs. Warm Start
	7.2 Generalization to other TEEs

	8 Related Work
	9 Conclusion
	References

