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Abstract
The ability to efficiently probe and instrument a running op-
erating system (OS) kernel is critical for debugging, system
security, and performance monitoring. While efforts to op-
timize the widely used kprobes in Linux over the past two
decades have greatly improved its performance, many fun-
damental gaps remain that prevent it from being completely
efficient. Specifically, we find that kprobe is only optimized
for ~80% of kernel instructions, leaving the remaining probe-
able kernel code to suffer the severe penalties of double traps
needed by the kprobe implementation. In this paper, we focus
on the design and implementation of an efficient and general
trapless kernel probing mechanism (no hardware exceptions)
that can be applied to almost all code in Linux. We discover
that the main limitation of current probe optimization efforts
comes from not being able to assume or change certain prop-
erties/layouts of the target kernel code. Our main insight is
that by introducing strategically placed nops, thus slightly
changing the code layout, we can overcome this main limita-
tion. We implement our mechanism on Linux kprobe, which
is transparent to the users. Our evaluation shows a 10x im-
provement of probe performance over standard kprobe while
providing this level of performance for 96% of kernel code.

1 Introduction

The ability to instrument (a.k.a. “probe”) a running OS kernel
is critical for not only debugging and event tracing [13] but
also for system security [10,11], performance monitoring [25],
and dynamic patching [12]. An efficient and fast kernel prob-
ing mechanism is key to enabling the use of these applications
directly in the field on production systems and can open up
a rich set of new use cases, such as enforcing kernel control
flow integrity (KCFI) with dynamic policies [16].

A kernel probe allows users to dynamically instrument ar-
bitrary kernel instructions to execute user-provided handlers—
pre-handlers before executing the probed instruction and post-
handlers after. To intercede on the kernel’s control flow and
invoke these handlers, typical kernel probe implementations
rely on traps. When a probe is registered, the kernel makes
a copy of the probed instruction and replaces it with a break-
point instruction. When execution hits the breakpoint instruc-
tion, a trap occurs and the control is transferred to the probe
subsystem, which executes the pre-handler, probed instruc-
tion, and post-handler before resuming normal execution at

the instruction following the probe point. The obvious draw-
back of trap-based probes is the significant overhead due to
the expensive context switches involved (more than 6,000
CPU cycles from our measurements).

To overcome the above drawback, a trapless approach is
needed. The key idea is to replace the expensive traps with
control-redirecting instructions like jump instructions. While
a trapless approach can eliminate the overhead associated
with the traps, it introduces a major challenge. Specifically,
for variable-length instruction set architectures like x86, a
jump instruction can be longer than the probed instruction,
thereby overwriting multiple instructions. This can cause the
jump instruction to span basic block boundaries and cause ex-
ecution failure. This challenge can limit where trapless probes
can be used, thus how many instructions can be trapless.

Whether using a trap-based or trapless approach, another
challenge with implementing a kernel probing mechanism is
how to execute the copy of the probed instruction efficiently.
One typical choice is to execute the copied instruction directly
on the processor. However, this direct execution does not
work for some sets of instructions such as those related to the
instruction pointer, e.g., calls and jumps. These instructions
must be emulated, which is slow and adds complexity in terms
of implementing and maintaining the emulation code.

In this paper, we present the design and implementation of
a universally fast (trapless probing on all probe-able code)
kernel probing mechanism that requires no runtime code em-
ulation. Our design allows probe handlers to be executed
synchronously in the same context that triggered the probe
and thereby avoids expensive context switches. To achieve
this design, we rely on a key insight—by strategically insert-
ing nops into the kernel code, thus slightly changing the code
layout, we can overcome the above two challenges. Specifi-
cally, for probe locations that straddle basic block boundaries,
an inserted nop can ensure the jump instruction resides in
one basic block; for instructions that require code emulation,
placing a nop before such instructions allows a probe to be
attached by overwriting the nop with a call to the kernel probe
handlers, thereby allowing the probed instruction to be exe-
cuted in place with no copy or emulation. Most importantly, in
our approach, the locations to place the nops can be automati-
cally identified and kept minimal, thus reducing the impact
on normal kernel operations when no probe is installed.

To demonstrate the efficacy of our approach, we apply
our design to Linux kprobe [3] on x86, a widely used ker-



nel probing mechanism and architecture. Kprobe has been
transformed over the years from a purely trap-based probe
mechanism to utilizing a trapless approach [12]. However,
despite persistent optimization efforts, due to many funda-
mental limitations stemming from not being able to assume
or change certain properties/layout of the kernel code at run-
time and thereby overcoming the aforementioned challenges,
kprobe is far from being universally trapless. Exacerbating
the problem, existing kprobe optimizations are often applied
in an ad hoc manner, resulting in many instructions being
unoptimized, even if it is technically possible, oftentimes due
to the sheer complexity of the implementation. We discovered
that the existing kprobe is only optimized for ~80% of kernel
instructions, leaving the remaining probe-able kernel code to
suffer the severe penalties of up to two traps when probed.

Our universally trapless kprobe implementation consists
of a new transformation pass in the LLVM x86 backend to
identify the locations where a nop is needed and perform the
insertion. To allow kprobes to be optimized using the inserted
nops, we implemented kernel support for efficient, scalable
trampolines and runtime instruction rewriting.

We evaluate both the performance and optimization cov-
erage of our design. Our kprobe implementation achieves a
speedup of up to 3x for kprobe-based KCFI enforcements on
LEBench [24] over the original kprobe, with the single-probe
performance increased by a factor of 10x. Our kprobe imple-
mentation optimizes all the kernel instructions that can be
optimized at compile time and brings the total instructions op-
timizable in the kernel to 96%. In fact, even more performance
improvement can be potentially achieved (we prioritized com-
patibility and non-disruptive changes to accommodate the
current optimizations of Linux kprobe).

In summary, this paper makes the following contributions:

• We present a fast and universal trapless kernel probe design;
• We identify fundamental limitations of existing Linux

kprobe optimization techniques;
• We implement our design on top of Linux kprobe and show

the efficacy of the approach.

The source code of our universally trapless kprobe imple-
mentation can be found at https://github.com/hardos-ebpf-
fuzzing/atc24-uno-kprobe.

2 Design

The design of our trapless kernel probe mechanism has two
main goals: 1) the kernel probe should be fast when applied
to any kernel instructions without using expensive traps (e.g.,
int3 exceptions) and 2) the mechanism should be simple to
not increase implementation and maintenance complexity of
kernel code and lightweight to not incur significant overhead.
Since a kernel probe is inserted at runtime when the code

layout is fixed, there are two main challenges with imple-
menting a universally trapless kernel probe mechanism: 1)
how to ensure the inserted jump instruction does not span
basic block boundaries – blindly rewriting these instructions
would overflow into the next basic block and corrupt branch
targets, and 2) how to allow instructions that would normally
require emulation in a typical kernel probe implementation to
be directly executed. In this section, we discuss a clean-slate
design of a universal trapless kernel probe mechanism before
describing how we apply our design to Linux kprobe (§ 3).

2.1 A Baseline Solution

Our key insight for resolving the first challenge is to use the
insertion of nops to change the code layout of the kernel.
The nops inserted at compile time can provide space and be
used as anchor points for inserting probes at runtime without
tampering with regular kernel instructions.

The first basic incarnation of this approach is to insert a
5-byte nop instruction before every kernel instruction. In this
way, probing a specific instruction works by rewriting the
preceding nop into a same-sized relative call that redirects
the control flow onto a global trampoline. The trampoline
first saves register contexts on the stack. This prevents the
user-defined handler from overwriting the current execution
context. Next, the trampoline invokes the user-defined handler
to perform actual probing. Finally, after the handler finishes,
the trampoline pops the register contexts and returns. The
returned control flow would land on the next instruction after
the call, which is exactly the probing target. Execution can
then continue with the correct context.

While this approach ensures that no trap is needed, and thus
any kernel probe is fast, inserting a nop before every instruc-
tion would introduce significant overhead when the kernel
probes are not used. Our evaluation shows a 75% slowdown
for LEBench running on Linux v6.3.6 (§ 4).

2.2 Minimal nops Design

Clearly, improving the baseline would require strategically
placing nops. Fortunately, we observe that the vast majority
of the nop instructions in the baseline can be omitted. Specif-
ically, if there is enough space before a branch target, there
is a potential opportunity of rewriting a relative jmp to the
trampoline in place [12]. As illustrated in Figure 1, the mov
instruction being probed can be rewritten into a relative jmp
to the probe trampoline, without tempering the branch target
after it. Doing this rewriting requires us to copy the target
instruction and any other instruction that could be overwrit-
ten by the 5-byte relative jmp to a temporary copy buffer.
After the trampoline invokes the user-supplied handler and
restores the register context, it executes the instructions saved
in the copy buffer and performs another relative jump back to
the normal execution path. This implementation requires the

https://github.com/hardos-ebpf-fuzzing/atc24-uno-kprobe
https://github.com/hardos-ebpf-fuzzing/atc24-uno-kprobe


0: 83 ff 02        cmp $0x2,%edi
3: 75 05           jne 0xa
5: ba 00 01 00 00  mov  $0x100,%edx
a: ff c7           inc %edi # jmp target

0: 83 ff 02        cmp $0x2,%edi
3: 75 05           jne 0xa
5: e9 de ad be ef jmp <probe_trampoline>
a: ff c7           inc %edi # jmp target

Figure 1: Case where there is enough space before a jump
target for the probed instruction.

copied instructions to be executed out-of-line (in the buffer),
not at the original code location.

Only in the cases where in-place replacement of a jmp
instruction is not possible, we apply the nop-based design.
Such cases can be broadly classified into two categories:

• instructions that cannot be executed out-of-line.
• instructions that do not have enough space without over-

writing a jump target (i.e., start of a basic block).

The set of instructions that cannot be executed out-of-
line includes instructions for which their text address mat-
ters for execution. These groups of instructions include
call instructions and also instructions that may trigger
page faults. The call instruction belongs to this group be-
cause the callee may be expecting a specific caller (e.g., via
__builtin_return_address) and, therefore, cannot be ex-
ecuted directly on the copy buffer. Otherwise, the return ad-
dress obtained would point to the copy buffer rather than
the original address. On the other hand, certain instructions,
e.g., userspace access instructions, could trigger a page fault
if an invalid address is being accessed. Linux defines short
“fixup code” snippets that implement the fault-recovery logic
to allow execution to continue for such instructions [5]. The
mapping between the faulting instruction and its fixup code is
stored in a special exception table section of the kernel image.
During a page fault, the page fault handler uses the address
of the faulting instruction to search for the corresponding
fixup code in the exception table. This effectively prevents
the instruction from being executed out-of-line in the copy
buffer, since there is not an entry in the exception table that
corresponds to the address of the faulting copy. In these sit-
uations, the inserted nop will still make it possible to probe
such an instruction without the need for a trap.

For instructions at the end of a basic block, the rewriting
technique may not be viable due to the possibility of over-
flowing into the next basic block when the instruction is not
long enough (as shown in Figure 2). Therefore, nops are still
needed under these situations since they allocate space to
safely place a call for efficient probes that avoid the traps.

0: 83 ff 02        cmp $0x2,%edi
3: 75 04           jne 0x9
5: 41 80 c0 01     add  $0x1,%r8b
9: ff c7           inc %edi # jmp target

0: 83 ff 02        cmp $0x2,%edi
3: 75 04           jne 0x9
5: e9 de ad be ef jmp <probe_trampoline>
a: c7 ...          ???   # jmp target broken

Figure 2: Case where there is not enough space before a jump
target for the probed instruction.
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Figure 3: A kernel probe takes two traps (steps 2 and 4).

3 Implementation

We discuss the application of our approach to kprobe in Linux.
We start by describing the current kprobe implementation
with current optimization techniques. We then highlight the
limitations of kprobe in achieving universally trapless kernel
probing. Finally, we discuss how our approach can help over-
come those limitations and present the details of a working
implementation. Our aim is to have an implementation that
minimizes changes to the kernel code, be fully compatible
with kprobe, and ensure the changes are transparent to users.

3.1 Linux Kprobe

Without optimizations, a trap-based kprobe on x86-64 uses
two traps (Figure 3). When a kprobe is registered, the kernel
makes a copy of the probed instruction (to avoid race con-
ditions) and replaces the first byte of the probed instruction
with a breakpoint instruction, i.e., int3 on x86-64. A second
int3 is appended at the end of the copied instruction.

When the execution hits the breakpoint instruction, a trap
occurs, the CPU’s registers are saved, and the control is
transferred to the kprobe subsystem, which executes a user-
provided pre-handler that is associated with the kprobe. Next,
kprobe single-steps the copy of the probed instruction to en-
sure the kernel regains control to execute any user-installed
post-handler associated with that kprobe. The single-step is
implemented by the second int3 trap after the copy. (known
as “int3” single-step [19]) 1. Execution then continues with
the instruction following the probe point.

1The kernel uses int3 instead of a Trap Flag (TF) to avoid implementation
complexity of handling the side effect of using iret (interrupt return) [19]
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Trap-based kprobes suffer greatly from the expensive con-
text switch overheads. Our measurement shows that such a
kprobe consumes more than 6,000 CPU cycles.

3.1.1 Existing Kprobe Optimizations

Since trap-based kprobes suffer greatly from expensive con-
text switches, optimizations have been developed to replace
expensive traps with jump instructions [12] (Figure 4). In
Linux, kprobe currently employs two optimizations, named
boosting and jump-optimization for the two traps, respectively.

Boosting. Boosting aims to replace the single-step trap with a
jump instruction. The insight is that if a kprobe does not have
a post-handler, then single-stepping may not be needed. So,
for a kprobe without a post-handler, the boosting optimiza-
tion adds a jump which jumps back to the next instruction,
replacing the single-step trap. In this way, the kernel exe-
cutes the copied instruction and the jump. Note that, unlike a
pre-handler, a post-handler is not commonly used.

Boosting is limited in scope since it cannot handle instruc-
tions that change the instruction pointer register (rip), e.g.,
call, and the instructions which may require exception fix-
ups. Instructions like call need to be emulated, instead of
being executed out-of-line, because the return address pushed
onto the stack needs to be corrected.

Jump-optimization. Jump-optimization builds upon boost-
ing, aiming to replace the breakpoint trap with a five-byte
relative jump that redirects the control flow to a pre-allocated
trampoline. The trampoline calls into the kprobe pre-handler
and then jumps back to the next instruction. In this way,
kprobe invokes the pre-handler synchronously on the same
execution context and avoids the expensive context switch.

Note that jump-optimization may need to overwrite and
copy multiple instructions, instead of only the probed instruc-
tion in the original kprobe (§3.1), because jump, as a five-byte
instruction, may be longer than the probed instruction. The un-
optimized kprobe with int3 does not encounter this problem
because int3 is a one-byte instruction. Kprobe implements an
x86 instruction decoder to recognize the instruction boundary.

Like boosting, jump-optimization is also limited. It suffers
from the same basic block spanning issues described in § 2.
The current kprobe implementation handles this limitation
conservatively, because it cannot reason about basic block
boundaries (i.e., branch targets) at runtime. Therefore, in ad-

Instruction Count (Percentage)

Non-boostable 949,396 (14.31%)
Non-jump-optmizable (boostable) 445,037 (6.71%)
Total 1,394,433 (21.02%)

Table 1: The number (percentage) of instructions in Linux
(v6.3.6) that are not optimized by kprobes. There are in total
6,632,661 kprobe-able instructions.

1. rip-changing instructions, e.g. jumps and calls
2. Instructions that may trigger exceptions (e.g. pages faults)
3. Instructions that override address size or code segment
4. x86 instructions group 2/3/4/5 with reserved opcodes.
5. Instructions with 3-byte opcodes

Table 2: Instructions that cannot be boosted (thus not jump-
optimized in the current kprobe implementation).

dition to ensuring no near jump to the region of the jump
instruction, kprobe also refuses to optimize any instructions
in a function that contains indirect jumps. Also, the imple-
mentation of jump-optimization depends on boosting; so,
non-boostable instructions cannot be jump-optimized.

3.1.2 Kprobe Limitations

The kprobe optimizations are not only limited in scope but
also applied to kernel instructions in an ad hoc way. Table 1
shows the amount of instructions that cannot be optimized
by either boosting or jump-optimization in Linux (v6.3.6).2

In total, 21.0% of the instructions in Linux cannot be fully
optimized, i.e., attaching a kprobe on around one-fifth of the
kernel text needs to pay for the context switch overhead raised
by breakpoint exceptions. Among them, the majority are non-
boostable (and thus cannot be jump-optimized).

In addition to the limitations discussed in §3.1.1, the pro-
cess of applying the two optimizations to the trap-based im-
plementation (§3.1) is often ad hoc. Linux adopts a strategy
of applying optimizations based on a few types of instructions
that are deemed to be safe. Table 2 lists the types of instruc-
tions that are not non-boostable in Linux. For example, all
Group 2, 3, and 4 instructions are deemed as non-optimizable
in the kernel, while some of them can clearly be optimized
(e.g., inc/dec for increments/decrements). In fact, the depen-
dency of the two optimizations is also an implementation
artifact; in principle, the two optimizations are independent.

3.2 Universally Fast Kprobe

Instead of continuing to manually apply existing optimiza-
tions to more types of instructions and special cases, we seek
a principled, universal implementation using our approach.
Our implementation consists of a compiler transformation

2There are ~6K instructions that are not probe-able such as trap instruc-
tions like ud2 and int3 and functions labeled as non-traceable.



that selectively inserts nops (§3.2.1) and kernel support for
efficient trampolines and instruction rewriting (§3.2.2). The
former takes 549 lines of C++ code and the latter takes 298
lines of C code. We build on top of Linux v6.3.6.

3.2.1 Compiler Transformation

We develop a compiler transformation to identify the mini-
mal set of locations where nops are needed to enable trapless
kprobes. The transformation is implemented on LLVM as a
MachineFunctionPass that works at the Machine IR (MIR)
level [4] in the code-generation backend. We chose MIR in-
stead of the generic LLVM IR because MIR closely models
native code, which makes it easy to check whether an instruc-
tion can be optimized by kprobe at runtime.

The transformation takes two iterations and operates on
each kernel function; it goes through each instruction in the
function and identifies instructions that are not boosted or
jump-optimized by Linux:

• If the instruction cannot be boosted, a nop instruction is
inserted before that instruction.

• If the instruction can be boosted but not jump-optimized
(which means that inserting a jump would overflow into
another basic block), a nop instruction is inserted before
the last instruction of the basic block.

Enabling universal boosting. Table 2 shows the categories
of non-boostable instructions. For each non-boostable instruc-
tion category that can be identified by opcode, the compiler
pass inserts a nop before the instruction.

Inserting a nop is straightforward in most cases. One spe-
cial case is to handle terminator instructions of basic blocks,
i.e., instructions at the end of the basic block that direct the
control flow to the successor basic blocks. Since such instruc-
tions modify instruction pointers, they are almost always not
boostable. The LLVM MIR implements the semantics similar
to native assembly code and permits basic blocks to have
multiple terminators (e.g., a basic block may have a condi-
tional jump (jcc) followed by a direct jump (jmp)—the direct
jump is executed when the conditional jump is not taken).
The LLVM backend requires no non-terminator instructions
between terminators. Therefore, it is invalid to insert nops
between terminators, which is required for non-boostable ter-
minators. To handle this case, our compiler pass splits the
basic blocks with multiple terminators into multiple basic
blocks, each of which has one terminator. The transformation
maintains the original control flow, and allows the insertion
of a nop in front of each terminator if needed.

The only non-boostable category that cannot be identified
by opcode directly is the instructions that may trigger excep-
tions (e.g., page faults). Our design covers these instructions,
but our current implementation does not handle them because
the kernel exception table with the actual kernel address is
not available until after linking.

Enabling universal jump-optimization. For instructions
that can be boosted but cannot be jump-optimized, our com-
piler pass aims to enable jump-optimization to avoid the
breakpoint trap. The reason that jump-optimization is not
applicable is due to the lack of space to place the five-byte
jump instruction.

The problem is straightforward to fix at compile time, be-
cause basic blocks are explicit and branches can only jump to
the entries of basic blocks. Therefore, the problem is reduced
to handling the case when rewriting a jump would overflow
to the next basic block. We address this case by inserting a
nop before the last instruction of each basic block. Note that
basic block terminators are handled by the prior iteration.

3.2.2 Kernel Support

We keep the kprobe interface for probe registration. If the
kprobe being registered is not jump-optimizable, our imple-
mentation will optimize it onto a preceding nop (if exists).
This leverages the kernel text-patching interface to replace the
5-byte nop instruction with a 5-byte relative call instruction
that redirects the control flow onto our trampoline.

Efficient, scalable trampoline design. In kprobe, the pre-
handlers expect to receive the registers (pt_regs) of the con-
text that triggered the probe. In trap-based kprobes (§3.1),
registers are automatically saved by the processor. For jump-
optimized kprobes that do not use a trap, their trampolines
explicitly save the register context and invoke the user han-
dlers with the saved context.

Currently, the kprobe jump-optimizer creates one trampo-
line for each instruction a jump-optimized kprobe is attached.
The jump-optimizer copies a pre-defined trampoline “tem-
plate” and fills it with information specific to that probe. For
example, the kernel copies the instructions overwritten by the
jmp to the end of the trampoline. Such a design is needed
because the instructions cannot be directly executed in place
after being overwritten by the jmp – they must be copied to
a trampoline customized for that kprobe. At the same time,
since jump-optimization uses a relative jmp to redirect the
control flow to the kprobe pre-handlers, the jump-back ad-
dress needs to be hardcoded into the trampoline in order to
resume the normal execution after probing.

However, creating one trampoline for every probed instruc-
tion is not only complicated but also does not scale well. We
address this issue by designing a single, global trampoline for
all the kprobes that are optimized with the nop (§2.1), because
the probed instructions can be executed in place.

Similar to the trampolines of jump-optimization, our tram-
poline pushes the registers onto the kernel stack with specific
ordering so that the pushed values form a pt_regs struct
which can be directly used by user handlers. A challenge for
our one-trampoline design is to handle the instruction pointer
register (rip). The pre-handler expects the rip to be the ad-
dress of the probed instruction. However, the rip changes
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at each instruction and cannot be trivially pushed onto the
stack. Unlike the per-instruction trampoline, the address of the
probed instruction is not encoded on the global trampoline.

We solve the problem by rewriting our 5-byte nop into a
5-byte relative call instruction that calls onto the trampoline,
instead of the relative jmp used by jump-optimization. The
call instruction automatically pushes the return address onto
the stack. This address is always the address of the next in-
struction after the nop, which is exactly the probed instruction
and the rip value the handler expects. In this way, the trampo-
line can just read the value of the expected rip from the stack
and store it in the pt_regs. The use of the call instruction
also allows us to jump back to normal execution as a ret will
be enough. The resulting workflow of our optimized kprobe
is shown in Figure 5.

We implement our trampoline in x86-64 assembly. The fin-
ished trampoline after compilation takes a constant 96 bytes in
the kernel, a significant improvement over the linear memory
complexity incurred by jump-optimization.

4 Evaluation

We evaluate our trapless kprobe mechanism, denoted as Uno-
kprobe, on its optimization coverage, probe performance, and
nop overhead. All measurements are performed on a bare
metal server with an 8-core Intel Xeon E-2174G CPU with
32GB of memory on a 1Gb/s network.

4.1 Trapless Kprobe Coverage

We assess the amount of kernel code that can utilize our trap-
less Uno-kprobe. Under the original kprobe implementation,
the classes of kernel instructions that are not optimizable
include instructions that cannot be boosted to execute out-of-
line (e.g., rip-modifying instructions) and instructions at the
end of basic blocks where jump-optimization could overwrite
branch targets. Both classes can now be optimized with Uno-
kprobe. Table 3 shows the amount of kernel code that can be
optimized under the original kprobe and our Uno-kprobe. Our
approach can optimize all currently unoptimized instructions
that can be identified at compile time, bringing the total in-
structions optimizable in the kernel from 79% to 96%. The
remaining non-optimizable instructions include instructions

Total instructions Vanilla Kprobe Uno-kprobe

6.63M 79% (5.24M) 96% (6.38M)

Table 3: Kernel code trapless-probe coverage of Uno-kprobe.

Vanilla Kprobe Uno-kprobe

No optimization 6235 ± 817 612 ± 407
Boost-only 2625 ± 2459 562 ± 369

Table 4: Latency (in cycles) of invoking an empty handler
using vanilla kprobe and Uno-kprobe.

that could trigger page faults and instructions from inline-
assembly blocks as well as assembly files (these instructions
cannot be trivially processed in the LLVM code generator).

4.2 Performance

We first evaluate the performance of Uno-kprobe on a mi-
crobenchmark. Our experiment consists of a single kprobe
with an empty handler attached to an instruction and measures
the total latency of the kprobe and instruction. We measure
the latency using both the original kprobe implementation and
Uno-kprobe and on both a boostable but not jump-optimizable
nop (located at the end of a basic block) and a non-boostable
shr. The results are shown in Table 4. Uno-kprobe is about
10x faster than the existing kprobe on a non-boostable instruc-
tion (i.e., with two traps) and 5x faster than that on a boostable
but not jump-optimizable instruction (i.e., with one trap) as
both of these probe sites are fully trapless with Uno-kprobe.
For existing kprobes on a non-boostable instruction, we found
that the majority of the performance overhead (86.8%) comes
from the traps and related context switches.

We then evaluate Uno-kprobe performance on applications
utilizing kprobes. Specifically, we measure the performance
of the LEBench [24] benchmark with a kprobe on all indirect
calls in the kernel that resembles a kernel CFI (KCFI) use
case. Figure 6 shows the overhead of LEBench when KCFI is
enabled using different techniques for invoking CFI handlers.
As can be seen, using the original kprobe results in the highest
overhead, with some system calls having overhead up to 3x
compared with our trapless kprobes. On average, Uno-kprobe
achieves a speedup of 1.4x across all LEBench. Kprobe has
been recognized by prior work to perform poorly in use cases
that require a high rate of invocation [10, 16]. Uno-kprobe
makes it feasible to use kprobe for such an application.

Lastly, we evaluate the overhead introduced by our inserted
nops when kprobes are not used. We measure the perfor-
mance of the LEBench under different nop insertion strate-
gies: vanilla kernel (no nop), nops before non-optimizable
instructions, and nops before every instruction. We found that
inserting nops before every instruction yields a rather large
overhead, 30% on average. Uno-kprobe, in contrast, incurs an
overhead of 10% on average on LEBench when kprobes are



Figure 6: Runtime overhead of different KCFI policies when executing LEBench, with vanilla kprobe in Linux and Uno-kprobe.
Value reported is based on median runtime of each benchmark.

not registered and achieves a performance advantage of up to
1.5x (mid mmap) over inserting nops before every instruction.
This may be acceptable for applications that heavily rely on
the probing functionality and already must incur the prob-
ing overhead, given the performance boost (up to 10x) at all
probe-able locations that can be achieved with Uno-kprobe.

5 Related Work
SystemTap [21] and DTrace [8] both use trap-based prob-
ing mechanisms. Similarly, Ptrace [1] uses traps to provide
userspace applications with a mechanism to hook onto pro-
cesses. Another trap-based probing mechanism is the Xen-
probes [22] for probing guest kernels. Mechanisms for secure
active monitoring [20], dynamic operating systems monitor-
ing [9], memory introspection [17], and intrusion detection
in the kernel [23] use forms of trap-based probing. Our work
offers a principled solution to optimize probes with handlers
sharing the same address space, but would require a different
design for probes requiring a world-switch.

Unlike trap-based techniques, many instrumentation probes
utilize trampolines instead of breakpoints. The Ftrace function
tracer [2] in the Linux kernel utilizes compiler-placed nops at
the beginning of functions and rewrites them dynamically to
jump to trampolines. A similar mechanism is also proposed
for enforcing kernel CFI due to its performance benefit [16].
Both mechanisms only work on probing specific points in
the kernel and are far from being universal, unlike our work.
At the same time, DynamoRIO [7], DynInst [6], and Intel
Pin [18] are trampoline-based tools where some of them use
emulation, which might benefit from our work and would be
an interesting future work.

6 Concluding Remarks

This paper presented a fast and universal trapless kernel probe
design based on strategically placed nops. We demonstrated
the feasibility by implementing our design on top of the Linux
kprobe subsystem, which in some cases still relies on expen-
sive traps. We show that the performance of kernel probes can

be effectively improved through this general design. To make
our work more practical, we have also engaged with the Linux
kernel community and have upstreamed patches that contain
optimizations [14] as well as bug fixes [15] for the current
kprobe implementation. For future work, we are aiming to
further optimize the Linux kprobe with trapless probes and
make it more complete.
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