
Enabling BPF Runtime policies for better BPF management
Raj Sahu

Virginia Tech
Blacksburg, VA, USA
raj.sahu@vt.edu

Dan Williams
Virginia Tech

Blacksburg, VA, USA
djwillia@vt.edu

ABSTRACT
As eBPF increasingly and rapidly gains popularity for observability,
performance, troubleshooting, and security in production environ-
ments, a problem is emerging around how to manage the multitude
of BPF programs installed into the kernel. Operators of distributed
systems are already beginning to use BPF-orchestration frameworks
with which they can set load and access policies for who can load
BPF programs and access their resultant data. However, other than
a guarantee of eventual termination, operators currently have little
to no visibility into the runtime characteristics of BPF programs and
thus cannot set policies that ensure their systems still meet crucial
performance targets when instrumented with BPF programs. In
this paper, we propose that having a runtime estimate will enable
better policies that will govern the allowed latency in critical paths.
Our key insight is to leverage the existing architecture within the
verifier to statically track the runtime cost of all possible branches.
Along with dynamically determined runtime estimates for helper
functions and knowledge of loop-based helpers’ effects on control
flow, we generate an accurate—although broad—range estimate
for making runtime policy decisions. We further discuss some of
the limitations of this approach, particularly in the case of broad
estimate ranges as well as complementary tools for BPF runtime
management.

CCS CONCEPTS
• General and reference → Performance; • Software and its
engineering → Software performance; Virtual machines; Real-time
systems software; Operating systems;

KEYWORDS
eBPF, Policy, Orchestration

ACM Reference Format:
Raj Sahu and Dan Williams. 2023. Enabling BPF Runtime policies for better
BPF management. InWorkshop on eBPF and Kernel Extensions (SIGCOMM
’23), September 10, 2023, New York, NY, USA. ACM, New York, NY, USA,
7 pages. https://doi.org/10.1145/3609021.3609297

1 INTRODUCTION
eBPF is a special instruction set virtual machine which is gaining
popularity due to its ability to directly load a program into the Linux

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SIGCOMM ’23, September 10, 2023, New York, NY, USA
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0293-8/23/09.
https://doi.org/10.1145/3609021.3609297

kernel while guaranteeing safety. With emerging use cases, produc-
tion servers are increasingly becoming dependent on a variety of
BPF programs [1] for managing load [2], profiling [3], security [4],
etc. As a result, the community has developed BPF managemen-
t/orchestration frameworks [5, 6] which system administrators can
use to get better control over the BPF programs running in their
system. A BPF-orchestrator acts as a control plane and provides
APIs for the users to interact with BPF programs in the system.
The interface allows a sysadmin to configure role-based policies
that will allow users to load BPF programs based on their roles and
privilege. These policies can be used to secure important nodes of
a cluster, prevent a low-privileged user from loading to a critical
hook point of the kernel, reduce the list of loaded BPF programs
accessible to a user for data collection, etc.

Even though these policies can greatly reduce unexpected be-
havior by associating users with the least possible privilege, there
currently exists no reliable mechanism to determine how costly
these BPF programs can be to the system in the worst case. A
slow-running BPF program can prove to be bottleneck at any fre-
quently used call path within an operating system [7]. Thus having
a generic performance prediction of eBPF programs is now an in-
dispensable requirement for system administrators who want to
track performance penalties due to BPF.

Existing works have shown symbolic execution, similar to what
is done by the BPF verifier, can obtain a promising level of perfor-
mance prediction for Network Functions (NFs) [8, 9]. We propose a
Runtime Estimator which is a hybrid of static and dynamic anal-
ysis that is more generally applicable to any BPF program.Using
dynamic measurements and static analysis, the modified verifier
generates an overall estimate of the best-case to worst-case runtime
of a BPF program. We test the proposed solution against some sam-
ple eBPF programs from the Linux kernel source code and observe
the estimates to be aligned to actual runtimes.

We also observe the runtime estimates to be very broad in some
cases. Preliminary investigation reveals that some of the helper
functions, on which BPF programs are usually dependent, can show
high variance due to I/O operations, argument-dependence, or lock-
contention. We intend to investigate ways to capture this variability
in our estimates for future work.

1.1 Contributions
The key contributions made in this work are :

• We identify runtime estimation as a critical requirement for
emerging BPF policies.

• We propose a BPF runtime estimation mechanism to deter-
mine the performance cost of any given BPF program during
verification.

https://doi.org/10.1145/3609021.3609297
https://doi.org/10.1145/3609021.3609297


Raj Sahu and Dan Williams

BPF
Orchestrator

Access
Policies

Userspace code

Verifier
map

attach

Admin

Load
Policies

Kernel

BPF
bytecode

C
ritical Path

eBPF eBPF

eBPF

Figure 1: Regulating userspace interaction with BPF using
RBAC. (Blue pages are optimized BPF programs, while red
pages denote slower-running BPF programs which is slowing
down one of the critical paths)

• We perform measurements of several helper functions and
study their variation due to different factors.

In Section §2, we present relevant background information and
describe the motivation for this work. Section §3 describes the
design for the proposed solution followed by evaluation in Section
§4. Section §5 highlights key discussion points observed during
this work. We end with related work and a concluding summary in
Section §6 and Section §7 respectively.

2 RUNTIME IS IMPORTANT
In this section we provide background about BPF management and
highlight a gap around runtime policies.

2.1 Background
eBPF is an in-kernel extension framework that allows an admin to
dynamically load extension programs into the Linux kernel without
needing a system reboot. Unlike inherently unsafe kernel modules,
eBPF programs need to pass a verifier which performs static analysis
on the BPF bytecode to ensure memory safety and termination.
After successful verification, the admin attaches the program to a
hook point. An attached program has access to helper functions
which form an interface to kernel functions and provide common
utilities like modifying network packets, injecting faults, generating
random numbers, etc. A userspace program can interact with the
BPF programs usingmap data structures to share information across
the kernel-userspace interface.

As eBPF is finding use cases across diverse applications, BPF-
orchestrators are gaining importance as they provide efficient man-
agement of all the BPF programs in a system. Figure 1 gives an
overview of how BPF-orchestrators work in a cluster environment

1 int simple(void):
2 bpf_printk("foo")
3
4 int prog_n(void):
5 bpf_loop (1000, simple)
6 .
7 .
8 .
9 int prog_1(void):
10 bpf_loop (1000, prog_2)
11
12 int main():
13 bpf_loop (2000, prog_1)

Listing 1: Pseudo-code showing a sample long running BPF
program using nested loops.

like Kubernetes. An administrator configures load and access poli-
cies. The load policies can include signature validation[10], restrict-
ing users to a limited set of system hook points their eBPF program
can attach to, and to vary these policies for different pods to tighten
security around operation-critical pods. The access policies restrict
the list of BPF programs a user can interact with using shared map
objects. These policies can be per-user basis or role-based (RBAC)
as per the size of the cluster.

When a user wants to load their BPF bytecode to a specific hook
point, through the admin, the framework checks whether the user
has enough permissions to attach to the requested hook and then
passes the BPF bytecode to the verifier. The verifier performs the
static analysis and the framework, then, attaches the bytecode to the
desired hook upon successful verification. Whenever a userspace
program wants to access the map objects, it needs to pass through
the access policies which authenticate the request. If permitted, the
framework will provide APIs to read and write to the maps.

To summarize, the BPF-orchestrator, by enforcing policies, guards
a system from multiple facets :

• Load policies prevent less-privileged users from loading BPF
programs which can impact functionalities concerning per-
formance and security.

• Access policies ensure safety from unwarranted reads/writes
to BPFmap objects which can affect execution or leak system
information.

2.2 Runtime Policies
While the load and access policies provide fine-grained control

over BPF programs and their interaction, the operator has virtually
no insight into the runtime effects of these programs which intro-
duces challenges. Tracking runtimes is a necessity for operators
to meet SLA requirements in production environments. For exam-
ple, users inadvertently hooking on critical paths like the network
stack can lower the system’s resilience against Denial-of-Service
attacks. As the use of eBPF grows, multiple programs from multi-
ple vendors on a critical path make it virtually impossible for an
operator to reason about. Even though the existing policies prevent
less-privileged users from compromising critical functionalities,
they provide no control over the latency of BPF programs attached
by the high-privileged operators.

Currently, the best guarantee provided by the eBPF verifier is that
of eventual termination, but this guarantee itself does not indicate
how rapidly a program will terminate. We wrote a simple eBPF



Enabling BPF Runtime policies for better BPF management

program using the bpf_loop helper which could run indefinitely
despite being validated by the verifier. Listing 1 shows a simplified
version of the code. As the only limit on levels of nesting is due to
the limited stack size of BPF programs, adding more nested loop
calls to the allowed maximum makes the runtime in the order of
hours! Runtime estimation is therefore a critical requirement for
better management of BPF-dependent systems. Such an estimate
will not only flag low-performing programs but also will be useful
to create policies that restrict highly unpredictable or very long-
running programs from getting installed into the system.

A naive approach based on dynamic benchmarking using fuzzers
or the bpftool test-run feature faces the problem of incompleteness.
An incomplete analysis can miss rare but costly branches which
could eventually lead to unexpected worse-case runtimes. On the
other hand, using static analysis to estimate runtime has historically
faced the soundness problem as certain aspects of a program like
function pointers and function arguments are only known during
runtime. However, static analysis has not been investigated in the
context of eBPF runtime.

2.3 Challenges
While the restricted complexity of eBPF [11] makes static analysis
feasible for BPF programs, estimating the runtime of BPF programs
still poses challenges that are unique to BPF:

(1) Multiple program paths: BPF programs can have complex
branches distributed across several object files[12] which
can be missed during dynamic profiling.

(2) BPF programs do not convey the complete picture: BPF
programs depend on helper functions that are opaque to the
verifier during verification, i.e. the verifier cannot step into
them for performing analysis with given parameters. As BPF
programs frequently use these helpers, which internally can
be performing complex operations, their contribution to a
program’s latency cannot be ignored.

(3) Control flow changes due to helpers: Helper functions
like bpf_loop can dictate how long a program will run based
on the number of iterations. With more helpers like the
BPF inlined-iterators being introduced [13], the proposed
solution will need to consider the influence of these helpers
on the runtime estimation.

In the next section, we address the above challenges and discuss
how the proposed solution tackles them.

3 ESTIMATING BPF RUNTIME
Our key insight is that the eBPF verifier, already, traverses all possi-
ble branches of a BPF bytecode to perform range analysis over the
registers being used to ensure that none of the possible branches
breach safety properties. Our proposed solution leverages the ex-
isting infrastructure of the eBPF verifier and uses the verifier’s
Control Flow Graph(CFG) analysis to iterate through all possible
branches. As the verifier is not capable of iterating into helper calls,
we propose using a hybrid approach using runtime measurements
of the helpers in tandem with the CFG generated by the verifier.

Userspace code

map

at
ta

ch

Admin

Verifier

Runtime
Policies

eBPF
eBPF

eBPF

Runtime Estimator

Special
Case

Handler

Branch
Timer

Helper
Timer

Figure 2: The BPF-orchestrator uses worse-case estimates
from the enhanced verifier to regulate latency across critical
paths

3.1 The Runtime Estimator
Figure 2 shows the modified architecture where the verifier now
includes a Runtime Estimator. The Runtime Estimator internally
has three sub-components: the helper-timer, the branch-timer, and
the special-case handler.
The helper-timer: This component is responsible for creating a
mapping between all available helper functions and their respective
best and worst runtimes, using offline measurement, at boot-time.
We assume that helper function runtimes are deterministic and
well-defined. For obtaining the estimates, we use BPF samples from
the Linux kernel repository with the required helper and attach it
to the intended hook. The samples were modified such that each
helper is invoked 1000 times to report the best, average, and worst
case execution times. The modified sample BPF programs were trig-
gered for 10 different times to capture performance across varying
system load. For map based helpers, we used the LRU hashmap
(BPF_MAP_TYPE_LRU_HASH). For measuring execution time, we
used the bpf_ktime_get_ns helper and assume it’s variance to be
negligible.

Figure 3 shows the runtime estimates obtained for 31 helper
functions. The length of the bars describes how some helpers like
bpf_tcp_sock show a tight bound on runtimes while helpers like
bpf_map_update_elem and bpf_probe_read_user_str show a high
variation due to dependency on an argument or because of lock con-
tention, which we will further discuss in §5. The average runtime
(denoted through the line chart) is usually close to the best-case
runtime even if the best-to-worse case gap is high.

During this evaluation, we occasionally observed very high
worse-case runtimes reaching about 100-400x the otherwise ob-
served worse case. Based on the rarity of these data points and
their relationship with how long a helper executes, we speculate
that bursts of interrupts from events like network packets or timers



Raj Sahu and Dan Williams

Figure 3: Runtime range of BPF helpers (ns). Each bar repre-
sents best case to worse case runtime. Line graph shows the
average runtime for each helper.

were the reason. As these factors are not specific to BPF, we omit
these outliers from our helper timings and Figure 3.
The branch-timer: This component uses the verifier’s iteration
over the BPF bytecode to detect all possible branches. For a given
branch, all helper calls are referenced with the mapping generated
by the helper-timer to update the state variable containing best
and worst runtime estimates. If the helper is observed to vary in
a well-defined relation with its arguments, the branch-timer can
adjust the estimates as discussed in Section 5.
The Special-case handler: This component is responsible for
adjusting the theoretical runtime estimate to match control flow
changes by helpers like bpf_loop. For the bpf_loop helper, which
takes in the number of iterations and the static function to iterate
over as arguments, the special-case handler determines the iteration
count stored in register r1 and uses it with the estimated runtime of
the static function to suitably increment the estimate of the overall
program. This special case handling can be suitably extended to
other loop-based iterators like bpf_for_each and bpf_iter, which can
non-trivially influence the control flow of a BPF program.

At the end of verification, the Runtime Estimator reports the over-
all minimum and maximum runtime value over different branches
as the global runtime estimate. The BPF-orchestrator is informed of

1 int simple(void):
2 bpf_printk("A rare number")
3
4 int loop_simple(void):
5 bpf_loop (100, simple)
6
7 int main():
8 key = bpf_get_prandom_u32 ()
9 if (key >10)
10 bpf_printk("A common number")
11 else
12 bpf_loop (10000 , loop_simple)

Listing 2: Pseudo-code showing nested loops with branching
in a BPF program.

the obtained runtime estimates which can now be checked against
additional runtime policies before attaching the eBPF bytecode.

4 EVALUATION
In this section, we use the observations made during helper-runtime
calculations(§3) to evaluate the correctness of the Runtime Esti-
mator as a whole. We ran 13 different eBPF programs from the
samples/bpf directory of the Linux kernel through the modified
verifier which gave out a probable runtime range for each BPF
program. For actual runtimes, the runtime statistics saved in the
kernel were referred to. All the experiments were performed on a
12th Gen Intel(R) Core(TM) i7-12700 machine with 20 logical CPUs
and 32GB RAM on Linux kernel version 5.15 and Ubuntu 20.04.
Obtained values are listed in Table 1.

From the table, we can infer that the actual runtimes always
lie within the expected runtime range produced by the modified
verifier. While the actual runtimes are within a 50% of the worse
case for the tracex1, sockex1, trace_event and both the tcp_basertt
and tcp_dumpstats samples, we see a big margin for rest of the
samples. When we looked through the code of these samples,
we observed them to predominantly use high-variation helpers
including bpf_map_update_elem, bpf_probe_read_kernel and the
bpf_get_stackid (ref Figure 3). Note that the bpf_map_update_elem
estimates were based on the LRU hashmap for the purpose of ob-
serving worst case execution while in the actual evaluation samples,
the BPF_MAP_TYPE_ARRAY and BPF_MAP_TYPE_HASH map types
were used. We expect our estimates to significantly improve when
re-run with the actual map types. The other two helpers mentioned
before depend on parameters which are mostly unknown at ver-
ification time. To tackle this problem, we can assume a median
parameter value to get the most probable runtime which a parame-
terized helper can take.

We also performed the experiments using average-case helper
runtimes (figure 3) and observed estimates much closer to actual
runtimes. This is owed to fact that most of the helpers showcase
an average runtime which is much closer its best case runtime
despite showing a high tail latency. While our framework supports
average-case estimates, we find that the worse-case values gives a
better picture as they guarantee an upper-bound latency needed
for policy-based decision making.

To evaluate the special-case handler and the overall Runtime
Estimator, we wrote a BPF program (ref. Listing 2) with nested
bpf_loop helper calls. We use this simple program to demonstrate a
rare branch which can be easily missed in dynamic benchmarking.



Enabling BPF Runtime policies for better BPF management

Sample Program Expected Actual
Runtime Runtime

tracex1 192-2660 1011
tracex2 48-4028 88
tracex3 249-2040 468
tracex4 48-3454 279
tracex5 48-800 123

sockex1 86-590 225
sockex2 86-3424 551
sockex3 86-4274 123

test_current_task_under_cgroup 315-3224 753
test_probe_write_user 48-2450 761
trace_event 171-7878 6252

tcp_basertt 171-2220 1039
tcp_dumpstats 57-3470 2277

Table 1: Expected and actual runtime of eBPF samples

In the pseudocode, The bpf_get_random_u32 helper generates a 32-
bit random number based on which either of the two branches will
be followed. A dynamic benchmarking will highly likely pursue the
if-condition as the probability of getting (𝑘𝑒𝑦 < 10) is very low for
a 32-bit randomly generated integer. Using the Runtime Estimator,
the verifier generated a range of 115 to 180,000,510 nanoseconds
where the worst case belongs to the branch containing nested loops.
When this program was attached and triggered, we observed an
actual runtime of 125,013,362 ns when the worse case branch was
pursued. Hence, using the proposed solution, the verifier identifies
the most expensive branch and correctly reports it.

5 DISCUSSION & FUTUREWORK
In this section, we further discuss the implications of the helper
function runtime variation that we observed and then raise other
limitations and opportunities for runtime eBPF management.
Dealing with helper runtime variability: By using dynamic
measurements of helpers instead of that for the whole BPF program,
we have reduced the ambiguity of the expected runtime range of a
BPF program from extension program-level granularity to helper-
level granularity. However, as some of the most complex helper
functions have a call graph more than 20 nodes deep, the worst-case
runtime of a helper can be significantly different from the average
case observed through dynamic measurements.

Upon further investigation, we found the source of variation and
identified two different helper function classes based on source of
variance: argument-dependent and resource-dependent.

Argument-dependent helpers such as the bpf_get_stackid and
the bpf_perf_event_output helper show variation in runtimes with
change in arguments. If the argument is determinable statically or at
load time (e.g., the particular hook point that the program is loaded
at may dictate a fixed context argument to a helper), we believe
that our runtime estimator should be able to use this relationship
to improve our estimates.

On the other hand, helpers like bpf_map_update_elem operate
by taking locks before updating values in a BPF map, since the

BPF map could be shared between multiple eBPF programs. De-
pending on the number of threads and frequency of map access
(which are generally not statically determinable), we expect to en-
counter increased overhead due to lock contention. In our tests,
we observed that the average runtime of bpf_map_update_elem
increased by 2.5x and worst case runtime increased by ∼ 4x when
run concurrently in 2 CPUs. Accounting for latency due to lock
contention and cache coherence is generally a hard problem with
active research and we plan to study how the worst-case runtimes
are approximated in multi-core architectures. While not the case
for all locks or contended kernel resources, for some resources, we
may be able to determine how much contention to expect on a
lock and provide a better estimate. For example, a map may only
be referenced by eBPF programs, the number and concurrency of
which may be known to the BPF orchestrator at load time. Finally,
we are also interested in whether lock-taking helper functions can
be restructured/simplified for more deterministic runtimes.
Dynamic runtime mechanisms: As our static analysis based
solution shows high variation due to factors discussed above, we
consider the situation in which an operator may want to make use
of aggressive policies or average case policies that occasionally turn
out to be incorrect. In such a case, dynamic runtime strategies such
as runtime termination can enforce strict timers on the maximum
allowed runtime for BPF programs. For example, if the system de-
tects a BPF program has violated its permitted runtime constraints,
then the system can take appropriate steps via the use of control
mechanisms.

Runtime termination of eBPF programs is not trivial. eBPF pro-
grams run in the kernel, but kernel code is not safe to abruptly
terminate, as it may hold locks or references to kernel objects that
must first be released. Indeed, some of the eBPF verifier checks
ensure that locks and kernel references are released on every code
path, assuming that the program will terminate (as is also guar-
anteed by the verifier). As discussed in Section 2.2, termination
may not be timely. We are actively working on dynamic termi-
nation mechanisms to unwind early terminating eBPF programs,
thereby releasing all locks and kernel resources. We believe a run-
time mechanism will greatly compliment an operator’s control over
the latency induced by BPF programs.
Verifier vulnerabilities: Finally, our proposed solution heavily
relies on the verifier to traverse all possible branches of an eBPF
program. If the verifier erroneously skips a branch [14] then the
Runtime Estimator will not be able to account for the runtime of
that branch. However, as the eBPF verifier is under active scrutiny,
we expect such errors to become more infrequent over time.

6 RELATEDWORKS
Performance prediction of Network Functions is an active area of
interest due to rise of Network Function Virtualization (NFVs) on
commercial middleboxes. In [8, 9, 15, 16], the authors use symbolic
execution to generate a performance profile that can predict cost
for any given workload. But their work depends on annotations of
all the involved data structures regarding memory read-write costs
based on which the overall profile is generated. While the simplicity
of NFs allow such annotations, similar annotations are infeasible
for all BPF helpers because of the large number of kernel data



Raj Sahu and Dan Williams

structures which interact with BPF helpers at any given point [17].
Network Functions rely on optimizations like process co-location
and cache partitioning to reduce hardware contention. [18, 19] have
attempted to model the hardware properties like cache occupancy
and memory bandwidth to predict additional latency that would be
caused for each new co-located competitors in a NFV environment.
However, contentions in a general system can have multiple other
sources such as CPU memory capacity, storage bandwidth, CPU-
socket interconnect, etc which makes the modelling much more
difficult and error prone.

Worse Case Execution Time (WCET) is a widely used perfor-
mance metric in real-time systems [20]. Due to the restrictive pro-
gramming environment of eBPFs, estimating the runtime of eBPF
is very similar to estimating WCET of real-time systems. Worse
case estimation problem has been broadly dealt using two classes of
approaches: static analysis, and dynamic measurements. The static
analysis depends on Control Flow Analysis (CFA) to determine
loop bounds and recursion depths to provide an upper bound on
WCET [21], while dynamic measurements aim to provide estimates
closer to the hardware level by performing end-to-end tests of code
sub-components [22].

Attempts to use static analysis for WCET estimation in single-
core architecture have followed several approaches such as off-line
prediction [23], Genetic Algorithms [24], Integer Linear Program-
ming [25, 26] or statistical methods like the Extreme Value The-
ory [27–29]. But with the onset of multi-core architectures, esti-
mating WCET faces the trade-off between analysis of all possible
influence due to shared hardware resources, and making simplified
assumptions to reduce complexity [22, 30]. Due to modern proces-
sor architecture like caches and pipelines, the combined runtime
of two sequential pieces of code can greatly differ from the sum of
their individual runtime due to the execution state generated by
the former program.

Dynamic approach such as fuzzing [31–33] operates by generat-
ing new test cases by mutating seed inputs to discover new paths
during execution. While the efficiency of dynamic analysis is im-
proving with the latest contributions, they do not guarantee to visit
every hidden branch of the code. The community has, therefore,
evolved with hybrid solutions [22, 34–38] which combines stati-
cally computed Control-Flow Graph with execution time collected
through dynamic measurements to provide more precise estimation
results.

7 SUMMARY
In this work, we identified and highlighted the importance of BPF
runtime estimation for making stronger BPF-management policies.
Our proposed solution used a hybrid of static and dynamic analysis
to provide runtime estimates of BPF programs at verification time,
which can now be used by userspace BPF-orchestration frameworks
to limit latency in critical paths of the kernel. Our evaluations sug-
gest lowering the variance of argument-dependent or lock-taking
helper function to obtain tighter bounds of expected runtimes. In
future work, we plan to analyse argument-dependent and lock-
taking helpers to better understand their variation with function
parameters and contention, respectively.

ACKNOWLEDGEMENT
This work is supported in part by NSF grant CNS-2236966.

REFERENCES
[1] BPF performance analysis at netflix. https://d1.awsstatic.com/events/reinvent/

2019/REPEAT_1_BPF_performance_analysis_at_Netflix_OPN303-R1.pdf.
Accessed: 2023-06-08.

[2] Open-sourcing katran, a scalable network load balancer.
https://engineering.fb.com/2018/05/22/open-source/
open-sourcing-katran-a-scalable-network-load-balancer/. Accessed:
2023-06-08.

[3] Bpftrace. https://bpftrace.org/. Accessed: 2023-06-08.
[4] Tertragon:eBPF-based security observability and runtime enforcement.

https://github.com/cilium/tetragon. Accessed: 2023-06-08.
[5] bpfd. https://bpfd.netlify.app/. Accessed: 2023-05-22.
[6] l3afd. https://github.com/l3af-project/l3afd. Accessed: 2023-05-25.
[7] Hsuan-Chi Kuo, Kai-Hsun Chen, Yicheng Lu, Dan Williams, Sibin Mohan, and

Tianyin Xu. Verified programs can party: optimizing kernel extensions via
post-verification merging. In Proceedings of the Seventeenth European Conference
on Computer Systems, pages 283–299, 2022.

[8] Rishabh Iyer, Luis Pedrosa, Arseniy Zaostrovnykh, Solal Pirelli, Katerina
Argyraki, and George Candea. Performance contracts for software network
functions. In 16th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 19), pages 517–530, 2019.

[9] Rishabh Iyer, Katerina Argyraki, and George Candea. Performance interfaces for
network functions. In 19th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 22), pages 567–584, 2022.

[10] Toward signed BPF programs. https://lwn.net/Articles/853489/. Accessed:
2023-06-02.

[11] BPF architecture.
https://docs.cilium.io/en/latest/bpf/architecture/#instruction-set. Accessed:
2023-06-08.

[12] BPF: introduce function calls. https://lwn.net/Articles/741773/. Accessed:
2023-06-07.

[13] BPF open-coded iterators. https://lwn.net/Articles/925751/. Accessed:
2023-06-03.

[14] CVE-2023-2163. https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.
git/commit/?id=71b547f561247897a0a14f3082730156c0533fed. Accessed:
2023-06-02.

[15] Luis Pedrosa, Rishabh Iyer, Arseniy Zaostrovnykh, Jonas Fietz, and Katerina
Argyraki. Automated synthesis of adversarial workloads for network functions.
In Proceedings of the 2018 Conference of the ACM Special Interest Group on Data
Communication, pages 372–385, 2018.

[16] Daniele Rogora, Antonio Carzaniga, Amer Diwan, Matthias Hauswirth, and
Robert Soulé. Analyzing system performance with probabilistic performance
annotations. In Proceedings of the Fifteenth European Conference on Computer
Systems, pages 1–14, 2020.

[17] A zoological guide to kernel data structures. https:
//blogs.oracle.com/linux/post/a-zoological-guide-to-kernel-data-structures.
Accessed: 2023-07-06.

[18] Mihai Dobrescu, Katerina Argyraki, and Sylvia Ratnasamy. Toward predictable
performance in software {Packet-Processing} platforms. In 9th USENIX
Symposium on Networked Systems Design and Implementation (NSDI 12), pages
141–154, 2012.

[19] Antonis Manousis, Rahul Anand Sharma, Vyas Sekar, and Justine Sherry.
Contention-aware performance prediction for virtualized network functions. In
Proceedings of the Annual conference of the ACM Special Interest Group on Data
Communication on the applications, technologies, architectures, and protocols for
computer communication, pages 270–282, 2020.

[20] Reinhard Wilhelm, Jakob Engblom, Andreas Ermedahl, Niklas Holsti, Stephan
Thesing, David Whalley, Guillem Bernat, Christian Ferdinand, Reinhold
Heckmann, Tulika Mitra, et al. The worst-case execution-time
problem—overview of methods and survey of tools. ACM Transactions on
Embedded Computing Systems (TECS), 7(3):1–53, 2008.

[21] Giorgio C Buttazzo. Hard real-time computing systems: predictable scheduling
algorithms and applications, volume 24. Springer Science & Business Media,
2011.

[22] Robert I Davis and Alan Burns. A survey of hard real-time scheduling for
multiprocessor systems. ACM computing surveys (CSUR), 43(4):1–44, 2011.

https://d1.awsstatic.com/events/reinvent/2019/REPEAT_1_BPF_performance_analysis_at_Netflix_OPN303-R1.pdf
https://d1.awsstatic.com/events/reinvent/2019/REPEAT_1_BPF_performance_analysis_at_Netflix_OPN303-R1.pdf
https://engineering.fb.com/2018/05/22/open-source/open-sourcing-katran-a-scalable-network-load-balancer/
https://engineering.fb.com/2018/05/22/open-source/open-sourcing-katran-a-scalable-network-load-balancer/
https://bpftrace.org/
https://github.com/cilium/tetragon
https://bpfd.netlify.app/
https://github.com/l3af-project/l3afd
https://lwn.net/Articles/853489/
https://docs.cilium.io/en/latest/bpf/architecture/#instruction-set
https://lwn.net/Articles/741773/
https://lwn.net/Articles/925751/
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=71b547f561247897a0a14f3082730156c0533fed
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=71b547f561247897a0a14f3082730156c0533fed
https://blogs.oracle.com/linux/post/a-zoological-guide-to-kernel-data-structures
https://blogs.oracle.com/linux/post/a-zoological-guide-to-kernel-data-structures


Enabling BPF Runtime policies for better BPF management

[23] Antoine Colin and Isabelle Puaut. Worst-case execution time analysis of the
rtems real-time operating system. In Proceedings 13th Euromicro Conference on
Real-Time Systems, pages 191–198. IEEE, 2001.

[24] Jaswinder Ahluwalia, Ingolf H Krüger, Walter Phillips, and Michael Meisinger.
Model-based run-time monitoring of end-to-end deadlines. In Proceedings of the
5th ACM international conference on Embedded software, pages 100–109, 2005.

[25] Björn Lisper. Fully automatic, parametric worst-case execution time analysis.
WCET, 3:77–80, 2003.

[26] Wei Zhang and Jun Yan. Accurately estimating worst-case execution time for
multi-core processors with shared direct-mapped instruction caches. In 2009
15th IEEE International Conference on Embedded and Real-Time Computing
Systems and Applications, pages 455–463. IEEE, 2009.

[27] Stewart Edgar and Alan Burns. Statistical analysis of wcet for scheduling. In
Proceedings 22nd IEEE Real-Time Systems Symposium (RTSS 2001)(Cat. No.
01PR1420), pages 215–224. IEEE, 2001.

[28] Jeffery Hansen, Scott Hissam, and Gabriel A Moreno. Statistical-based wcet
estimation and validation. In 9th international workshop on worst-case execution
time analysis (WCET’09). Schloss Dagstuhl-Leibniz-Zentrum für Informatik,
2009.

[29] Yue Lu, Thomas Nolte, Iain Bate, and Liliana Cucu-Grosjean. A new way about
using statistical analysis of worst-case execution times. ACM SIGBED Review,
8(3):11–14, 2011.

[30] Claire Maiza, Hamza Rihani, Juan M Rivas, Joël Goossens, Sebastian Altmeyer,
and Robert I Davis. A survey of timing verification techniques for multi-core
real-time systems. ACM Computing Surveys (CSUR), 52(3):1–38, 2019.

[31] Jiayi Wei, Jia Chen, Yu Feng, Kostas Ferles, and Isil Dillig. Singularity: Pattern
fuzzing for worst case complexity. In Proceedings of the 2018 26th ACM Joint

Meeting on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, pages 213–223, 2018.

[32] Xuan-Bach D Le, Corina Pasareanu, Rohan Padhye, David Lo, Willem Visser,
and Koushik Sen. Saffron: Adaptive grammar-based fuzzing for worst-case
analysis. ACM SIGSOFT Software Engineering Notes, 44(4):14–14, 2021.

[33] Marcel Böhme, Van-Thuan Pham, and Abhik Roychoudhury. Coverage-based
greybox fuzzing as markov chain. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security, pages 1032–1043, 2016.

[34] Daniel Kästner, Markus Pister, Simon Wegener, and Christian Ferdinand.
Timeweaver: A tool for hybrid worst-case execution time analysis. In 19th
International Workshop on Worst-Case Execution Time Analysis (WCET 2019).
Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2019.

[35] G. Bernat, A. Colin, and S.M. Petters. Wcet analysis of probabilistic hard
real-time systems. In 23rd IEEE Real-Time Systems Symposium, 2002. RTSS 2002.,
pages 279–288, 2002.

[36] Stephen Law, Mike Bennett, Stuart Hutchesson, Ivan Ellis, Guillem Bernat,
Antoine Colin, and Andrew Coombes. Effective worst-case execution time
analysis of do178c level a software. Ada User Journal, 36(3), 2015.

[37] Ingomar Wenzel, Raimund Kirner, Bernhard Rieder, and Peter Puschner.
Measurement-based worst-case execution time analysis. In Third IEEE Workshop
on Software Technologies for Future Embedded and Ubiquitous Systems (SEUS’05),
pages 7–10. IEEE, 2005.

[38] Raimund Kirner, Ingomar Wenzel, Bernhard Rieder, and Peter Puschner. Using
measurements as a complement to static worst-case execution time analysis.
Intelligent Systems at the Service of Mankind, 2(8):20, 2005.


	Abstract
	1 Introduction
	1.1 Contributions

	2 Runtime is important
	2.1 Background
	2.2 Runtime Policies
	2.3 Challenges

	3 Estimating BPF Runtime
	3.1 The Runtime Estimator

	4 Evaluation
	5 Discussion & Future Work
	6 Related Works
	7 Summary
	References

