Pairwise BPF Programs Should Be Optimized Together

Milo Craun
Virginia Tech
Blacksburg, VA, USA
miloc@vt.edu

ABSTRACT

BPF programs are extensively used for tracing and observability in
production systems where performance overheads matter. Many
individual BPF programs do not incur serious performance degrad-
ing overhead on their own, but increasingly more than a single BPF
program is used to understand production system performance.
BPF deployments have begun to look more like distributed appli-
cations; however, this is a mismatch with the underlying Linux
kernel, potentially leading to high overhead cost. In particular, we
identify that many BPF programs follow a pattern based on pairwise
program deployment where entry and exit probes will be attached
to measure a single quantity. We find that the pairwise BPF pro-
gram pattern results in unnecessary overheads. We identify three
optimizations—BPF program inlining, context aware optimization,
and intermediate state internalization—that apply to pairwise BPF
programs. We show that applying these optimizations to an exam-
ple pairwise BPF program can reduce overhead on random read
throughput from 28.13% to 8.98% and on random write throughput
from 26.97% to 8.60%. We then examine some key design questions
that arise when seeking to integrate optimizations with the existing
BPF system.

CCS CONCEPTS

« Software and its engineering — Operating systems; Soft-
ware performance; Software testing and debugging;

KEYWORDS
eBPF, pairwise BPF, dynamic tracing, observability

ACM Reference Format:

Milo Craun and Dan Williams. 2025. Pairwise BPF Programs Should Be
Optimized Together. In 3rd Workshop on eBPF and Kernel Extensions (eBPF
°25), September 8—11, 2025, Coimbra, Portugal. ACM, New York, NY, USA,
6 pages. https://doi.org/10.1145/3748355.3748362

1 INTRODUCTION

BPF is a Linux kernel subsystem that allows verified safe kernel
extensions to be deployed. Since its introduction, BPF has seen
increasing usage in a variety of domains from high performance
networking [12, 17] to security [4] to observability [1-3, 9].

BPF program cost is important when deploying programs on pro-
duction systems because it can directly impact quality of service. At

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

eBPF °25, September 8-11, 2025, Coimbra, Portugal

© 2025 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-2084-0/25/09.

https://doi.org/10.1145/3748355.3748362

Dan Williams
Virginia Tech
Blacksburg, VA, USA
djwillia@vt.edu

the same time, deploying BPF tracing programs on production sys-
tems is valuable for performance engineers and system operators,
leading to a trade-off between maintaining production performance
and operator power.

Increasingly, BPF programs are part of a distributed deployment,
where a single application consists of multiple BPF programs and
user-space components that all communicate together. In this work
we identify a common pattern of BPF tracing program: pairwise BPF
programs. Pairwise BPF programs consist of an entry and an exit
probe that work together to perform a tracing operation. Pairwise
programs thus provide a clear and compelling example of BPF
programs as distributed applications.

Unfortunately, we observe that the structure of pairwise BPF
programs leads to unnecessary overhead cost. The entry and exit
programs are attached to locations in the kernel that are executed
closely together, but they must still pay the full cost of hooking
twice, one for each. Both probes may also contain duplicate context
checking code, which is needed by the BPF verifier but is redundant
in scope between both probes. Finally, they must explicitly export
and import intermediate state through the use of BPF maps, which
can be an expensive operation.

To address these overheads, we describe three performance op-
timizations for pairwise BPF programs, each targeting one of the
above identified sources of overhead. By manually implementing
all optimizations we show a reduction of overhead on random read
throughput from 28.13% to 8.98% and on random write through-
put from 26.97% to 8.60%. We then describe a series of key design
questions for how to create a system that safely and automatically
applies our optimizations to real-world pairwise BPF programs in
production.

2 COST OF DISTRIBUTED BPF PROGRAMS

BPF tracing and observability programs follow a distributed model
where they are broken into components that must explicitly share
state and communicate over channels. However, the Linux kernel is
not a distributed system, meaning there is a mismatch between BPF
program deployment and the underlying system. In this section we
show that the mismatch causes additional overhead for BPF pro-
grams in tracing use cases, by identifying the pairwise BPF program
pattern and analyzing the performance of an example pairwise
program.

2.1 BPF Tracing Programs Are Distributed

Typically, a single BPF tool consists of one or more BPF programs,
along with one or more user-space components. BPF programs
mainly communicate with user-space by explicitly using BPF maps
to share data. BPF maps are also used to communicate between
different BPF programs. The combination of components make up

https://doi.org/10.1145/3748355.3748362
https://doi.org/10.1145/3748355.3748362

eBPF ’25, September 8-11, 2025, Coimbra, Portugal

context BPF

E ®
Check ctxt %%
.. @
J %
BPF égsww
Check ctxt V
@

.__,/”__ (e.g.,map)
BPF Pair

Kernel
function

Figure 1: Pairwise BPF execution model

a single distributed application, but all are treated as separate BPF
objects.

Through a study of libbpf-tools [8], we identified a pervasive
pattern of distributed BPF tracing programs called pairwise BPF pro-
grams, or those with a related entry and exit component. We found
that 22 out of 57 tools contained pairwise BPF programs, indicating
that this is a common pattern for BPF tracing programs. Studying
pairwise BPF programs provides insight into the general perfor-
mance consequences of treating BPF programs as a distributed
application. The rest of this section describes pairwise BPF and
presents a study of the overheads associated with pairwise BPF
programs.

2.2 Pairwise BPF Programs

In this subsection we describe the pairwise BPF program pattern
by connecting a general model of pairwise BPF program execution,
shown in Figure 1, and an example BPF program from libbpf-tools:
fsdist.bpf.c [6] shown in Figure 2. We now walk through each
circled label in Figure 1.

@ Pairwise BPF programs consist of two separate, but seman-
tically linked BPF programs. The first BPF program is attached to
an entry hook and is executed before a kernel function is run or
an event is completed, while the second BPF program is attached
to an exit hook and is executed after the kernel function returns
or the event is handled. In the fsdist BPF program, Figure 2, the
entry program is called probe_entry and the exit program is called
probe_return. The loader for this program takes a filesystem as
an argument and attaches the programs to up to five corresponding
kernel functions. The entry and exit programs are attached using
fentry and fexit hookpoints if supported, and the slower kprobe
and kretprobe hookpoints otherwise. Different hookpoints have
different costs (which we will show in Figure 3). For the rest of the
example, we will assume that the program is used to trace an ext4
filesystem, and that it is attached to fentry/fexit.

@ Each of the entry and exit BPF programs must perform con-
text checks at the beginning of their execution. The main purpose
of the context check is to collect any needed information for the
execution of the rest of the program, as well as resolve any dy-
namic configuration information. In the fsdist BPF program, the
context checks for the entry program involve reading the current
pid and comparing it against a target_pid (lines 3-4,7-8). The exit
program ensures that the file system op value is within bounds and

Milo Craun and Dan Williams

1 static int probe_entry()

{
__u64 pid_tgid = bpf_get_current_pid_tgid();
4 _u32 pid = pid_tgid >> 32;

__u32 tid = (__u32)pid_tgid;
__ub4 ts;

if (target_pid && target_pid != pid)
return 0;
ts = bpf_ktime_get_ns();
10 bpf_map_update_elem(&starts, &tid, &ts, BPF_ANY);

1 return 0;
}
1 static int probe_return(enum fs_file_op op)
2 A{
3 __u32 tid = (__u32)bpf_get_current_pid_tgid();

4 __ub4 ts = bpf_ktime_get_ns();
__u64 xtsp, slot;
__s64 delta;

7 tsp = bpf_map_lookup_elem(&starts, &tid);
8 if (!tsp)

return 0;
0 if (op >= F_MAX_OP)

1 goto cleanup;
delta = (__s64)(ts - xtsp);
if (delta < 0)

14 goto cleanup;

if (in_ms)
delta /= 1000000;
else

delta /= 1000;
9 slot = log2l(delta);
20 if (slot >= MAX_SLOTS)
21 slot = MAX_SLOTS - 1;
22 __sync_fetch_and_add (&hists[op].slots[slot], 1);
23 cleanup:

24 bpf_map_delete_elem(&starts, &tid);
25 return 0;

2%)

Figure 2: fsdist.bpf.c code snippet, with entry and
return probes. Highlights indicate context checks and

externalized state

additionally reads an option to see if the resulting data should be
presented in milliseconds or not (lines 10-11, 15-18).

@ A key responsibility of the entry probe is to export state
for the exit probe to use later. For BPF programs this will typically
involve using a BPF map to store some information. The fsdist
entry program records a timestamp, and then stores it into a BPF
hash map, using the tid as a key (lines 5, 9-10). The exit probe will
then import external state for use in the program, involving a map
lookup and required safety checks. The fsdist exit program reads
the timestamp by looking up the tid in a BPF map. The value is
then ensured to be non-null so the program can safely access the
data. The program then uses the original timestamp to calculate
how long the filesystem operation took. At the end of the exit
program the timestamp map entry for the tid is deleted to allow
for measurement of future filesystem operations from the same
thread (lines 3, 7-9, 24).

Pairwise BPF Programs Should Be Optimized Together

Configuration Random Read (MB/sec) Random Write (MB/sec)
Baseline 2251.95 + 27.53 1718.21 + 48.35
fsdist 1618.46 + 16.96 (28.13%) 1254.69 = 47.47 (26.97%)

Table 1: Random read and write performance with fsdist
BPF program. Standard deviation is shown as error, and per-
centage overhead is in parentheses.

2.3 Cost of Pairwise BPF Programs

All BPF programs come with overhead costs, but pairwise programs
potentially come with more costs, as they involve paying hooking
costs twice, involve extra context checks, and involve more map
accesses for exporting and importing state. In this subsection we
present the three main sources of pairwise program overhead. We
performed two experiments to quantify and understand the costs
of pairwise BPF programs. The first experiment evaluates the over-
head of fsdist in a real world test, while the second experiment
seeks to understand the cost of hookpoints. The result of our ex-
periments show that pairwise BPF programs can cause overhead of
up to 28.14%. We provide qualitative arguments for other sources
of overhead we did not measure.

Overall Cost: To measure the performance overhead of fsdist
we performed an experiment comparing I0zone [7] random read
and random write performance with and without fsdist deployed.
Our system is a Linux kernel 6.13 virtual machine running I0zone
with one process on an ext4 filesystem. We repeat each trial 10
times and present the mean in Table 1. We find that using fsdist
incurs a 28.13% overhead on random read performance and a 26.97%
overhead on random write performance. The key takeaway is that
even simple pairwise BPF programs can generate high overheads.
Hooking Cost: Pairwise BPF programs involve twice as many
hooks as a single BPF program, meaning the impact of hookpoint
cost is doubled. To quantify the cost of hooking we performed an
experiment where we measure the runtime of an openat system
call while empty BPF programs are attached to different hookpoints.
Fentry, optimized kprobe, and raw tracepoint hookpoints are spe-
cially designed for maximum performance. Tracepoints present a
more stable interface for tracing, but are slower. Kprobe is a less
optimized hookpoint, but it can attach to anywhere in the kernel,
making it flexible.

As the BPF programs immediately return, all overhead is only
from the cost of hooking and returning from the BPF program. We
present our results in Figure 3. We find that the overhead on the
openat system call is between ~19%, for fentry and optimized
kprobes, and ~119% for kprobes. For pairwise BPF programs the
hooking cost will be paid twice. From this experiment we conclude
that the cost of hooking can be a significant part of the overall
performance overhead of pairwise BPF programs.

Context Checks: BPF programs require checks on variables to
ensure that they can pass the BPF verifier and are safe. In addition
to checks, there may be additional code that is used to set up the
BPF program. As the entry and exit probes are separate, they must
pass the verifier independently. Doing so may result in redundant
checks and code which can cause additional overheads.

Externalized State: Pairwise BPF programs require sharing state
between entry and exit probes. The primary mechanism is to use

eBPF 25, September 8-11, 2025, Coimbra, Portugal

250 -

200 -

150

Time (ns)

100 -

501

baseline fentry optimized raw
kprobe tracepoint

Configuration

tracepoint kprobe

Figure 3: Hookpoint cost for different hookpoints.

context context context

F= " Sle 1 |==Yeel|e. 1y T T

BPF ' Bxpopy [l T T T Bwon O I gpF !
| Checkotet 1|t 7] i _B‘PF T e [[P
~--" % Kernel % Local state
Kernel function
function \m‘,oﬂj‘“ﬁe/ ‘D ““voﬂs‘}e/ H ;(ernel

I B - unction

BPF ! State =¥ Sate | ___ L

j Gheck et Il (e.g.map) 1 _B:_F__j_ (e.g.map) T oer L

Figure 4: The three optimizations we present: BPF program
inlining, context aware optimization (CAO), and intermedi-
ate state internalization.

a BPF map to provide communication between the two programs.
Depending on the map type and parameters, updating and accessing
maps can cause significant overhead [15]. The pair of programs do
both, and the use of BPF maps for sharing state can cause overhead.

3 OPTIMIZING PAIRWISE BPF PROGRAMS

From our performance study, we found that pairwise BPF programs
can impose high overhead costs. Next, we analyze the features of
pairwise BPF programs and present three optimizations, BPF pro-
gram inlining, context aware optimization (CAO), and intermediate
state internalization (ISI), shown in Figure 4, that can potentially
improve the performance of pairwise BPF programs. After describ-
ing each optimization, we walkthrough the process of manually
applying all optimizations to the fsdist BPF program. Finally, we
quantify by how much the use of our optimizations reduces over-
head.

3.1 BPF Program Inlining

We present BPF program inlining as a method to reduce the hooking
cost, and to enable our other optimizations. As shown in Figure
4(a), performing inlining involves directly writing BPF program
text into the kernel text where it is attached. Doing so removes
the hooking cost, and also places entry and exit programs into the
same context.

3.2 Context Aware Optimization

As shown in Figure 4(b), context aware optimization (CAO) involves
removing unnecessary context checks from pairwise BPF programs,
and linking together kernel code with BPF program code. One
example is if kernel code fetches a large data structure which is

eBPF ’25, September 8-11, 2025, Coimbra, Portugal

then used by the BPF program. Without CAO, the BPF program
would have to re-fetch the data structure, but by applying CAO, the
BPF program can use the already available data.

Not all BPF programs will benefit from CAO. For example, a
BPF program that does not make use of any hookpoint specific
information, such as specific kernel data structures, likely will not
benefit from CAO, as it is hookpoint context independent by nature.

3.3 Intermediate State Internalization

A large opportunity for optimization in pairwise BPF programs
takes the form of internalizing intermediate state. As described in
§2, pairwise BPF programs must explicitly externalize state through
BPF maps. As shown in Figure 4 (c), intermediate state internal-
ization (ISI) improves performance by avoiding the usage of BPF
maps, and by removing code that supports externalization of state.

In general, BPF map performance can be an expensive part of
BPF programs [15]. By treating the pair of BPF programs as a single
semantic unit and putting them in the same context we can replace
the usage of globally shared state (i.e. BPF maps) with much faster,
but local and private state (i.e. a stack variable or thread local
storage).

The two BPF programs may also include additional supporting
code needed for importing and exporting intermediate state. For
example, both the entry and exit may need to fetch common data,
such as a pid, tid, or a common value from a map. With ISI, we
can eliminate the need for fetching this data if it is only used to
support exporting and importing state. If the data has other uses,
we can potentially eliminate a re-fetch of the data, if we are sure
that the data will not change across the kernel function execution.

3.4 Optimization Example

In this section we walk through the process of hand optimizing
the BPF program in Figure 2. The program originally attached to
five different filesystem functions. We manually optimized all five
programs independently. We only describe the process specifically
for the ext4_file_read_iter kernel function, as it is representa-
tive of all five programs. We present the final optimized code in
Figure 5.

Inlining: The first step is to inline the BPF program code at the
beginning and end of the traced function, shown in Figure 4 (a).
We do this by directly inserting the code at the entry and exit of
the traced kernel function. Then we rewrite the control flow of
the kernel function in order to ensure that the BPF program is
called. We had to rewrite all early return paths to direct control
flow to the return probe by storing return values, and performing
unconditional jumps to the return probe code.

CAO: Next we performed CAO, shown in Figure 4 (b). In the
probe_return on line 10 and 22, there is a reference to an op
variable. At this point we know what the value of op is because it is
known based on the attachment location. In particular we know that
op is F_READ. Related to this, we also resolve dynamic configuration
checks. In the original program on lines 7 of the probe_entry, and
lines 10 and 15 of the probe_return there is code that consists of
checks against configuration values and a check for the op field.
We know the values of each of these ahead of time, and we remove
checks, as well as ensure that the value of op is in range.

Milo Craun and Dan Williams

1 static ssize_t ext4_file_read_iter(struct kiocb *iocb, struct
iov_iter =*to)
{

3 ssize_t ret;

4 u64 ts = ktime_get_ns();
struct inode *inode = file_inode(iocb->ki_filp);
if (unlikely(ext4_forced_shutdown(inode->i_sb))) {

ret = -EIO;

8 goto file_read_iter_exit;
¢ 3

0 if (liov_iter_count(to)) {
1 ret = 0;

goto file_read_iter_exit;
3 }
i #ifdef CONFIG_FS_DAX
if (IS_DAX(inode)) {

ret = ext4_dax_read_iter (iocb, to);

goto file_read_iter_exit;

}
9 #endif
20 if (iocb->ki_flags & IOCB_DIRECT) {

21 ret = ext4_dio_read_iter (ioch, to);

22 goto file_read_iter_exit;

23 3}

24 ret = generic_file_read_iter(ioch, to);
25 file_read_iter_exit:

26 u64 delta = ts - ktime_get_ns();
27 if (delta < 0)
28 return ret;

2 delta /= 1000;

30 u64 slot = fsdist_log2l(delta);
31 if (slot >= FSDIST_MAX_SLOTS)
32 slot = FSDIST_MAX_SLOTS - 1;

33 __sync_fetch_and_add (&hists[F_READ].slots[slot], 1);
34 return ret;

Figure 5: Model optimized version of fsdist.bpf.c for the
ext4_file_read_iter function. Highlights indicate which op-
timization: inlining , CAO , and ISI

ISI: Now, we are able to internalize state, shown in Figure 4 (c). The
starts BPF hash map is no longer needed to pass the timestamp
between the probe_entry and probe_return, as they are now
inside the same function scope. We instead store an initial time
stamp on the stack, and reference that when we compute the overall
time delta. Doing so allows us to remove all BPF map access helpers
related to the starts map, as it is no longer used. After this we
remove any supporting code and state needed to support the usage
of the starts map. In this case we remove all code associated with
collecting a tid to index the starts map. Depending on whether
or not the target_pid configuration was set we can also remove
accessors to pid.

3.5 Optimization Performance Analysis

In this subsection we analyze the performance of the hand-
optimized fsdist pairwise BPF program. As before, we use IO-
zone to benchmark random read and write throughput. We use
Linux kernel 6.13 with different sets of optimizations applied. We
include a baseline with an unmodified kernel and a test with the
regular BPF program deployed. We then perform inlining followed

Pairwise BPF Programs Should Be Optimized Together

2000000

1500000 -

1000000 -

Throughput (kB/sec)

500000

Baseline Intermediate CAO Inline BPF
State
Optimization Configuration

Figure 6: I0zone read/write throughput.

by CAO followed by IS, as described above for all five attachment
points. Each optimization is applied after the previous had also
been applied. We present the results in Figure 6.

Overall we find that applying all three optimizations reduced
overhead on random read throughput from 28.13% to 8.98% and on
random write throughput from 26.97% to 8.60%. There are three fea-
tures of note in the data. First, we see that there is a jump from the
BPF performance to the strictly inlined version, indicating that the
hooking overhead does introduce overhead outside of micro bench-
marks. Second, we see that the performance between the CAO and
inlining vs inlining alone is not significant. This is expected because
the example program does not contain many opportunities for fur-
ther CAO, so any performance difference is likely obscured due to
experimental noise. We expect that there are other less context in-
dependent programs which will receive a greater benefit from CAO.
Finally, we see that there is another step up in performance when
we apply ISL From the performance experiment we conclude that
there is performance benefits from the optimizations we describe.

4 APPLYING OPTIMIZATIONS

In this section we raise two key design questions and explore them.
We first ask: How much optimization can be automatic? Automatic
optimization refers to how much pairwise BPF programs can be
optimized without any modification to the programs. We then ask:
What are the mechanisms for applying optimizations?

4.1 Automatic Optimization

A key challenge to automatically applying optimizations is to be
able to programmatically identify pairwise BPF programs, and their
features. The kernel could use metadata about programs such as
where they will attach and the order of BPF program loading, to
help reason about when two programs are pairwise. The kernel
could also look for access patterns to maps in order to identify
when a BPF map is being used for externalizing state. For example,
if after identifying a pairwise BPF program, one map is written to
only by the entry probe, and is read only by the exit probe, then
that map is likely used for externalizing state. Additionally, the
kernel must be able to identify what code is only used to support
state externalization.

However, the above heuristics may be inaccurate and may not be
able to identify all opportunities for optimization. The key takeaway
is that fully automating all optimization is hard, and likely to result
in missing optimization opportunities.

eBPF 25, September 8-11, 2025, Coimbra, Portugal

The question then becomes how much does the BPF program
developer have to do to enable optimizations. One approach could
be to provide a framework for the developer to write programs
in such a way as to avoid ever externalizing state or putting in
redundant code. In this scenario, no code would need to be removed
from the program, and the only automatic optimization would be
inlining the program code in the kernel. Another approach could
be to simply include what maps are shared between entry and exit
probes as metadata, and then rewrite the program automatically.

4.2 Implementing Optimizations

Another design question is the mechanisms to use for implementing
optimizations. A natural approach to supporting all optimizations
is to use dynamic function rewriting to essentially automate the
optimization process described in §3.4. This would allow for all
optimizations to be performed, and would provide flexibility for
additional optimizations. However, rewriting kernel functions dy-
namically is invasive, and carries challenges such as ensuring that
kernel function safety is not compromised and overcoming general
concerns about kernel text modification. Additionally, hookpoints
and BPF subsystem code ensure an initial state before BPF program
execution, such as disabling migration or preemption. As part of
inlining, the additional setup must be addressed by either ensuring
that it is safe to remove, or by implementing it inline with the BPF
code.

Another approach is to make pairwise BPF programs first class
objects in the BPF subsystem, by introducing a special type of lo-
cal BPF map, new hookpoint, and verifier modifications. Pairwise
programs could then be written, or automatically converted as
discussed above, to use the new BPF mechanisms to be more effi-
cient. The full BPF inlining and CAO benefits may not be present
with this approach, but a combination approach could be taken to
minimize kernel text modification, while maximizing optimization
opportunity.

5 RELATED WORKS

In this section we describe other work that seeks to optimize BPF
program performance or otherwise reduce the impact of BPF pro-
grams on running systems.

Optimize BPF Program Cost: Several pieces of work seek to op-
timize BPF program code itself. K2 [18] is an optimizing compiler
that works to synthesize that is more performant as well as being
amenable to the verifier constraints on BPF programs. Another op-
timizing compiler for BPF is Merlin [16]. Merlin works to optimize
BPF programs through special instruction merging and strength
reduction techniques. Both of these projects try to optimize BPF
bytecode before verification through the use of traditional compiler
techniques. They do not include optimizations for pairs of BPF
programs, instead focusing on individual programs only.
Optimizing Hookpoints: Much work has been done in the Linux
kernel to reduce the costs of hookpoints. Raw tracepoints [5] and
fentry/fexit [10] hooks are more efficient than traditional trace-
points or optimized kprobes. Both optimized hookpoints lose out
on some generality in order to improve performance. Raw trace-
points do not save arguments in the context for BPF programs,

eBPF ’25, September 8-11, 2025, Coimbra, Portugal

while fentry/fexit can only be used on function entry and exit. An-
other work places nop instructions into the kernel to allow more
kprobes to be optimized to avoid the cost of a double trap [13].
Unlike optimizing hookpoints, we use semantic information about
BPF programs to perform optimizations that are useful for our spe-
cific case. One interesting line of research would be to see if a new
hookpoint mechanism can be developed specifically for supporting
pairwise BPF programs.

Dynamically Optimize: Some work seeks to improve the perfor-
mance of BPF dynamically. KFuse [14] aims to optimize chains of
BPF programs by merging programs together. Doing so allows for
BPF programs installed by different users to be combined together.
Craun et. al propose the implementation of per-process BPF pro-
grams in order to reduce overhead for processes that do not need
to be traced [11]. Both projects use dynamic mechanisms to try to
reduce the overall overhead of BPF programs on the system. The
usage of per-process kernel views in [11] represents a use of kernel
binary modification, which is related to our idea of dynamic kernel
function rewriting.

6 SUMMARY

In conclusion, pairwise BPF programs are a common pattern found
in dynamic tracing BPF use cases and are indicative of the kinds
of additional overheads that can come from programming BPF
programs to be distributed, while running them in a centralized way.
Despite being common, a lack of support leads to high performance
overheads from deploying pairwise BPF programs. We identified
three optimizations and show that the application of them can
significantly reduce the overall overhead of pairwise BPF programs.
Finally, we presented some preliminary design work indicating
potential ways to apply the optimizations in a real-world system.

7 ACKNOWLEDGMENTS

We thank the anonymous reviewers for their insightful comments.
This work was funded in part by NSF grant CNS-2236966.

8 ETHICAL CONCERNS

This work raises no ethical concerns.

REFERENCES

[1] 2024. bece. https://github.com/iovisor/bce. (May 2024).

Milo Craun and Dan Williams

] 2024. bpftrace. https://github.com/bpftrace/bpftrace. (May 2024).

] 2024. Cilium. https://cilium.io. (May 2024).

[4] 2024. Falco. https://falco.org/. (December 2024).

] 2024. Program type BPF_PROG_TYPE_RAW_TRACEPOINT. https://docs.ebpf.io/

linux/program-type/BPF_PROG_TYPE_RAW_TRACEPOINT/. (November 2024).

[6] 2025. fsdist.bpf.c. https://github.com/iovisor/bcc/blob/master/libbpf-tools/fsdist.
bpf.c. (May 2025).

[7] 2025. I0zone Filesystem Benchmark. https://www.iozone.org/. (May 2025).

[8] 2025. libbpf-tools. https://github.com/iovisor/bce/blob/master/libbpf-tools/. (May
2025).

[9] 2025. pixie. https://px.dev/. (May 2025).

[10] 2025. Program type BPF_PROG_TYPE_TRACING. https://docs.ebpf.io/linux/
program-type/BPF_PROG_TYPE_TRACING/. (March 2025).

[11] Milo Craun, Khizar Hussain, Uddhav Gautam, Zhengjie Ji, Tanuj Rao, and Dan
Williams. 2024. Eliminating eBPF Tracing Overhead on Untraced Processes. In
Proceedings of the ACM SIGCOMM 2024 Workshop on EBPF and Kernel Extensions
(eBPF ’24). Association for Computing Machinery, New York, NY, USA, 16-22.
https://doi.org/10.1145/3672197.3673431

[12] Toke Heiland-Jergensen, Jesper Dangaard Brouer, Daniel Borkmann, John
Fastabend, Tom Herbert, David Ahern, and David Miller. 2018. The eXpress
data path: fast programmable packet processing in the operating system kernel.
In Proceedings of the 14th International Conference on Emerging Networking EX-
periments and Technologies (CONEXT ’18). Association for Computing Machinery,
New York, NY, USA, 54-66. https://doi.org/10.1145/3281411.3281443

[13] Jinghao Jia, Michael V. Le, Salman Ahmed, Dan Williams, Hani Jamjoom, and

Tianyin Xu. 2024. Fast (Trapless) Kernel Probes Everywhere. In 2024 USENIX

Annual Technical Conference (USENIX ATC 24). USENIX Association, Santa Clara,

CA, 379-386. https://www.usenix.org/conference/atc24/presentation/jia

Hsuan-Chi Kuo, Kai-Hsun Chen, Yicheng Lu, Dan Williams, Sibin Mohan, and

Tianyin Xu. 2022. Verified programs can party: optimizing kernel extensions via

post-verification merging. In Proceedings of the Seventeenth European Conference

on Computer Systems (EuroSys °22). Association for Computing Machinery, New

York, NY, USA, 283-299. https://doi.org/10.1145/3492321.3519562

Chang Liu, Byungchul Tak, and Long Wang. 2024. Understanding Performance

of eBPF Maps. In Proceedings of the ACM SIGCOMM 2024 Workshop on EBPF and

Kernel Extensions (eBPF "24). Association for Computing Machinery, New York,

NY, USA, 9-15. https://doi.org/10.1145/3672197.3673430

[16] Jinsong Mao, Hailun Ding, Juan Zhai, and Shiqing Ma. 2024. Merlin: Multi-

tier Optimization of eBPF Code for Performance and Compactness. In Pro-

ceedings of the 29th ACM International Conference on Architectural Support
for Programming Languages and Operating Systems, Volume 3 (ASPLOS °24).

Association for Computing Machinery, New York, NY, USA, 639-653. https:

//doi.org/10.1145/3620666.3651387

Sebastiano Miano, Alireza Sanaee, Fulvio Risso, Gabor Rétvari, and Gianni An-

tichi. 2022. Domain specific run time optimization for software data planes.

In Proceedings of the 27th ACM International Conference on Architectural Sup-

port for Programming Languages and Operating Systems (ASPLOS °22). Asso-

ciation for Computing Machinery, New York, NY, USA, 1148-1164. https:

//doi.org/10.1145/3503222.3507769

Qiongwen Xu, Michael D. Wong, Tanvi Wagle, Srinivas Narayana, and Anirudh

Sivaraman. 2021. Synthesizing safe and efficient kernel extensions for packet

processing. In Proceedings of the 2021 ACM SIGCOMM 2021 Conference (SIGCOMM

’21). Association for Computing Machinery, New York, NY, USA, 50-64. https:

//doi.org/10.1145/3452296.3472929

[14

[15

(17

[18

https://github.com/bpftrace/bpftrace
https://cilium.io
https://falco.org/
https://docs.ebpf.io/linux/program-type/BPF_PROG_TYPE_RAW_TRACEPOINT/
https://docs.ebpf.io/linux/program-type/BPF_PROG_TYPE_RAW_TRACEPOINT/
https://github.com/iovisor/bcc/blob/master/libbpf-tools/fsdist.bpf.c
https://github.com/iovisor/bcc/blob/master/libbpf-tools/fsdist.bpf.c
https://www.iozone.org/
https://github.com/iovisor/bcc/blob/master/libbpf-tools/
https://px.dev/
https://docs.ebpf.io/linux/program-type/BPF_PROG_TYPE_TRACING/
https://docs.ebpf.io/linux/program-type/BPF_PROG_TYPE_TRACING/
https://doi.org/10.1145/3672197.3673431
https://doi.org/10.1145/3281411.3281443
https://www.usenix.org/conference/atc24/presentation/jia
https://doi.org/10.1145/3492321.3519562
https://doi.org/10.1145/3672197.3673430
https://doi.org/10.1145/3620666.3651387
https://doi.org/10.1145/3620666.3651387
https://doi.org/10.1145/3503222.3507769
https://doi.org/10.1145/3503222.3507769
https://doi.org/10.1145/3452296.3472929
https://doi.org/10.1145/3452296.3472929

	Abstract
	1 Introduction
	2 Cost of Distributed BPF Programs
	2.1 BPF Tracing Programs Are Distributed
	2.2 Pairwise BPF Programs
	2.3 Cost of Pairwise BPF Programs

	3 Optimizing Pairwise BPF Programs
	3.1 BPF Program Inlining
	3.2 Context Aware Optimization
	3.3 Intermediate State Internalization
	3.4 Optimization Example
	3.5 Optimization Performance Analysis

	4 Applying Optimizations
	4.1 Automatic Optimization
	4.2 Implementing Optimizations

	5 Related Works
	6 Summary
	7 Acknowledgments
	8 Ethical Concerns
	References

