SchedBPF - Scheduling BPF programs

Kavya Shekar
Virginia Tech
Blacksburg, Virginia
skavya@vt.edu

ABSTRACT

The Linux BPF framework enables the execution of verified cus-
tom bytecode in the critical path of various Linux kernel routines,
allowing for efficient in-kernel extensions. The safety properties
and low execution overhead of BPF programs have led to advance-
ments in kernel extension use-cases that can be broadly categorized
into tracing, custom kernel policies, and application acceleration.
However, BPF is fundamentally event-driven and lacks native sup-
port for periodic or continuous tasks such as background tracing,
metric aggregation, or kernel housekeeping. Existing approaches
such as kernel modules with kthreads, userspace daemons, or BPF
timers fail to satisfy all the essential requirements for periodic ker-
nel extensions such as fine-grained CPU control, kernel safety, and
minimal overhead.

To address this gap, we propose Sched BPF — a conceptual frame-
work that enables periodic execution of BPF programs on kernel
threads. SchedBPF program executions are sandboxed and pre-
emptible, as governed by the existing BPF verifier and JIT engine.
They also adopt time-slice semantics, cgroup-style CPU quotas, and
nice-level priority control, similar to kernel threads. SchedBPF aims
to enable low-overhead, periodic execution of safe BPF code with
fine-grained CPU resource management.

CCS CONCEPTS

« Software and its engineering — Operating systems;

KEYWORDS

Kernel extensions, Kernel modules, eBPF

ACM Reference Format:

Kavya Shekar and Dan Williams. 2025. SchedBPF - Scheduling BPF programs.
In 3rd Workshop on eBPF and Kernel Extensions (eBPF °25), September 8—11,
2025, Coimbra, Portugal. ACM, New York, NY, USA, 3 pages. https://doi.org/
10.1145/3748355.3748366

1 BACKGROUND AND MOTIVATION

The ability to run custom bytecode in the kernel at various hook
points has enabled various use cases. Monitoring and tracing appli-
cations such as Cilium and Hubble [8] leverage BPF to trace packet
flows and export metrics with minimal overhead. Application ac-
celeration use cases such as XDP [1] and XRP [5] short-circuit the

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

eBPF °25, September 8—11, 2025, Coimbra, Portugal

© 2025 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-2084-0/25/09.

https://doi.org/10.1145/3748355.3748366

Dan Williams
Virginia Tech
Blacksburg, Virginia
djwillia@vt.edu

kernel’s traditional network and storage stacks, respectively, result-
ing in significant performance gains. Kernel extension frameworks
like sched_ext [13] and proposals like eBPF-mm [14] allow devel-
opers to customize core kernel policies such as process scheduling
and memory management. These advancements in kernel extensi-
bility can be attributed to the following intrinsic features of BPF
programs:

e Kernel Programmability: BPF allows custom programs to be
loaded and executed at kernel hook points, allowing the flow of
kernel execution to be programmable without system reboots or
kernel recompiles.

o Verifier-Enforced Safety: The BPF verifier ensures safe in-
kernel execution by statically verifying invalid memory accesses,
program termination and absence of harmful recursive tail-calls.

e Minimal Execution Overhead: BPF programs run in the con-
text of their triggered hook points with minimal context-switch
overheads.

However, there exists another class of kernel extension use cases
that require periodic or continuous execution. For example: (1)
background tracing and profiling tasks such as DAMON [2] require
sampling memory access patterns or system statistics at regular
intervals; (2) periodic aggregation and garbage collection of per-
CPU metrics or the contents of BPF maps; (3) custom kernel daemon
tasks for housekeeping activities, such as Kernel Samepage Merging
(KSM) or the Out-of-Memory (OOM) reaper. The ideal requirements
for such periodically executed kernel extensions are:

(1) Fine-grained CPU control: The execution of kernel exten-
sions must be visible as distinct tasks to the Completely Fair
Scheduler (CFS), allowing for cgroup-style CPU quotas and
nice-level adjustments to ensure controlled resource usage.

(2) Kernel safety: The execution of kernel extensions should not
compromise the integrity of the kernel and other applications

(3) Minimal execution overhead: The overhead associated with
periodically scheduling and executing the extension programs
should be minimized to maintain system performance.

Considering kernel modules and BPF programs as the two feasi-
ble options for kernel extensions, we have identified three different
approaches for the periodic execution of kernel extensions. How-
ever, these approaches do not satisfy all the key requirements, as
summarized in Table - 1

Kernel Threads (kthreads) + Kernel Module: One method for
periodic execution of kernel extension involves creating a dedicated
kthread via a kernel module, an approach adopted by DAMON[3].
The execution priority of these kthreads could be managed by
attaching them to specific cgroups. The overheads of running
kthreads can also be bounded, as achieved by DAMON [6]. How-
ever, kernel modules are unrestricted and operate with full kernel


https://doi.org/10.1145/3748355.3748366
https://doi.org/10.1145/3748355.3748366
https://doi.org/10.1145/3748355.3748366

eBPF ’25, September 8-11, 2025, Coimbra, Portugal

Table 1: Comparison of existing approaches for periodic exe-
cution of kernel extensions

Approach CPU control Safety Overhead
kthread v X v
Userspace daemon v v X
BPF timer X v v
SchedBPF v v v

privileges, which is often undesirable and poses a higher risk for
simpler kernel extension tasks.

Periodic BPF Program Execution via User-Space Daemon:
The second approach involves triggering a BPF program with the
BPF_PROG_RUN [10] command periodically from a user-space dae-
mon process, as adopted by XDP developers for garbage collection
before the introduction of bpf_timer[4]. The BPF verifier ensures
kernel safety. Since the user-space daemon acts as an orchestrator
for the execution of the BPF program, attaching the daemon to a
custom cgroup allows for fine-grained CPU control of the kernel
extension. However, this approach adds context-switch overheads
from user space to kernel space for every invocation of the BPF
program.

BPF Timers: Although primarily designed for event-driven sce-
narios, bpf_timer[4] callbacks can be used as a workaround to
achieve periodic scheduling of BPF programs. However, BPF timers
typically execute in a softIRQ context which is not directly man-
aged by the CFS scheduler. The softIRQ context makes it difficult
to specify fine-grained CPU scheduling controls which adds pre-
emption overheads to other processes and fails to intuitively bring
out periodic nature of the program. eTran [11] addresses a few of
these limitations through modifications to BPF timers, highlighting
both the upcoming need for periodic execution of kernel extensions
and the absence of a native BPF support.

In summary, none of the existing approaches comprehensively
satisfies all the key requirements for a periodically executed kernel
extension. To address this gap, we propose a new framework —
SchedBPF — designed to satisfy all the requirements for a periodi-
cally executed kernel extension.

2 PROPOSED SOLUTION

SchedBPF is a conceptual framework that introduces a new BPF
program type : BPF_PROG_TYPE_PERIODIC. During program load
time, the BPF program is verified and a dedicated (kthread) is
created for triggering the BPF program. The periodicity of execution,
as specified by the user, is used to configure the schedule interval
for the execution of the BPF program. The newly created kthread
will be assigned to a custom cgroup, whose scheduling attributes
will have default values suitable for running periodic BPF programs
with minimal overhead and interference to other processes. To
summarize, the proposed design addresses the key concerns as
follows:

o Fine-grained CPU control: Managed through custom cgroup
configuration.

Kavya Shekar and Dan Williams

o Kernel Safety: Achieved via the existing BPF verifier and sand-
boxing mechanism.

e Low overhead: Achieved by using kthreads, enabling direct
in-kernel scheduling of programs.

3 DISCUSSION

Controlling Periodicity: Two approaches are proposed for the
periodic execution of a BPF program: (1) Framework-managed: The
kthread is periodically woken up to run the BPF program, sepa-
rating the BPF program’s logic from the scheduling mechanism.
(2) BPF Program-managed: The kthread triggers the BPF program
once, and the program itself manages its periodicity by sleeping in
a non-blocking way after each execution.

Specialized kthread Execution: To improve performance, we
could explore optimizing the execution of kthread. This could in-
volve minimizing the BPF sandbox setup or reducing context switch
overhead for waking up the kthread, given that the kthread’s sole
function is to run the BPF program.

Dedicated vs. Shared kthread: The concept of a dedicated kthread
per BPF program is still open to discussion. An alternative is to
allow multiple related BPF programs to share a single kthread, in
the Linux workqueue style. This would enable unified resource
management and control for a group of programs.

System-wide Impact and Cross-Core Inference: For profiling,
new BPF helper functions could be introduced that gather met-
rics from multiple cores. This necessitates considerations of cross-
core interference from the kthreads [9] and the potential use of
cgroups to manage and mitigate these effects.

Preemption of BPF Programs: Sleepable BPF programs [12] and
the introduction of bpf_preempt_enable()[7] demonstrate that
BPF programs, together with a specific subset of kfuncs marked
as sleepable, can safely operate in preemptible contexts. However,
a more comprehensive investigation may be necessary to identify
potential issues or edge cases related to CFS-driven preemption
during BPF program execution.

4 SUMMARY

In this extended abstract, we have motivated the need for periodic
execution of kernel extensions in the Linux kernel and identified
the shortcomings of existing approaches. SchedBPF offers a con-
ceptual framework for a new type of BPF program that provides
safe, preemptible, and resource-controlled periodic execution of
BPF programs. We believe that SchedBPF will open the doors to a
new set of kernel extension use-cases that are periodic in nature all
while also maintaining the benefits of BPF safety and performance.

5 ACKNOWLEDGEMENT
This work was funded in part by NSF grant CNS-2236966

6 ETHICAL CONCERNS

This work raises no ethical concerns

REFERENCES

[1] 2018. The eXpress data path: fast programmable packet processing in the operat-
ing system kernel. In Proceedings of the 14th International Conference on Emerging



SchedBPF - Scheduling BPF programs

[12]

Networking EXperiments and Technologies (CONEXT ’18). Association for Com-
puting Machinery, New York, NY, USA, 54-66. https://doi.org/10.1145/3281411.
3281443

2019. DAMON. https://damonitor.github.io/. (2019).

2019. DAMON design document. https://www.kernel.org/doc/html/v6.12/mm/damon/design.html.

(2019).

2021. [PATCH v5 bpf-next 00/11] bpf: Introduce BPF timers. (2021). https:
//lwn.net/ml/bpf/20210708011833.67028- 1-alexei.starovoitov@gmail.com/

2022. XRP: In-Kernel Storage Functions with eBPF. In 16th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 22). USENIX Association,
Carlsbad, CA, 375-393. https://www.usenix.org/conference/osdi22/presentation/
zhong

2023. DAMON Evaluation. https://damonitor.github.io/posts/damon_evaluation/.
(2023).

2024. [PATCH bpf-next v1 0/2] Introduce bpf_preempt_disable,enable. (2024).
https://lore kernel.org/all/20240423061922.2295517- 1-memxor@gmail.com/
2025. Cilium and Hubble. https://docs.cilium.io/en/stable/overview/intro/. (2025).
2025. [RFC/PATCH] sched: Support moving kthreads into cpuset cgroups. (2025).
2025. Running BPF programs from userspace. (2025). https://docs.kernel.org/
bpf/bpf_prog_run.html

Zhongjie Chen, Qingkai Meng, ChonLam Lao, Yifan Liu, Fengyuan Ren, Minlan
Yu, and Yang Zhou. 2025. eTran: Extensible Kernel Transport with eBPF. In
22nd USENIX Symposium on Networked Systems Design and Implementation (NSDI
25). USENIX Association, Philadelphia, PA, 407-425. https://www.usenix.org/
conference/nsdi25/presentation/chen-zhongjie

Jonathan Corbet. 2020. Sleepable BPF programs. (2020). https://lwn.net/Articles/
825415/

[13] Jonathan Corbet. 2023. The extensible scheduler class. (2023). https://lwn.net/

[14]

Articles/922405/

Konstantinos Mores, Stratos Psomadakis, and Georgios Goumas. 2024. eBPF-
mm: Userspace-guided memory management in Linux with eBPF. (2024).
arXiv:cs.0S/2409.11220 https://arxiv.org/abs/2409.11220

eBPF 25, September 8-11, 2025, Coimbra, Portugal


https://doi.org/10.1145/3281411.3281443
https://doi.org/10.1145/3281411.3281443
https://damonitor.github.io/
https://lwn.net/ml/bpf/20210708011833.67028-1-alexei.starovoitov@gmail.com/
https://lwn.net/ml/bpf/20210708011833.67028-1-alexei.starovoitov@gmail.com/
https://www.usenix.org/conference/osdi22/presentation/zhong
https://www.usenix.org/conference/osdi22/presentation/zhong
https://lore.kernel.org/all/20240423061922.2295517-1-memxor@gmail.com/
https://docs.cilium.io/en/stable/overview/intro/
https://docs.kernel.org/bpf/bpf_prog_run.html
https://docs.kernel.org/bpf/bpf_prog_run.html
https://www.usenix.org/conference/nsdi25/presentation/chen-zhongjie
https://www.usenix.org/conference/nsdi25/presentation/chen-zhongjie
https://lwn.net/Articles/825415/
https://lwn.net/Articles/825415/
https://lwn.net/Articles/922405/
https://lwn.net/Articles/922405/
http://arxiv.org/abs/cs.OS/2409.11220
https://arxiv.org/abs/2409.11220

	Abstract
	1 Background and Motivation
	2 Proposed Solution
	3 Discussion
	4 Summary
	5 Acknowledgement
	6 Ethical concerns
	References

